第30卷
第3期高师理科学刊Vol.30No.32010年5月Journal of Science of Teachers ′College and University May 2010
文章编号:1007-9831(2010)03-0068-03
有限差分法解薛定谔方程与
MATLAB 实现
刘晓军(齐齐哈尔大学理学院,黑龙江齐齐哈尔161006)
摘要:介绍了用有限差分法解薛定谔方程,以一维无限深势阱、含位势的一维无限深势阱为例求解,并应用M ATL AB 软件编程计算,模拟画出几率图形.
关键词:有限差分法;薛定谔方程;一维无限深势阱
中图分类号:O413.1文献标识码:A doi :10.3969/j.issn.1007-9831.2010.03.022
在量子力学中求解薛定谔方程是一个重要的问题,但在实际问题中往往很难确定解析解,这样利用数值方法求数值解就有一定的优势和实际意义[1].还可以利用计算机手段给出形象化分析,更有利于理解和应用.根据有限差分法中的二阶微分中心差分算符(其中忽略3x 及更高阶项)
[2]222
)()(2)()(d d x x x f x f x x f x f x
++=(1)
可将一维定态薛定谔方程[3])()()()(d d 22
2
2x E x x V x x =+=(2)化为)(])([)(2)()(2)(22x E x V x x x x x x =++=
(3)以点x n x n =(N n ....3,2,1=)将坐标分为N 个相等的间隔,当N 充分大时,x 就足够小.将第k 个分点的波函数简记为)(x k k =[4].同时满足条件
00==n ,则式(3)化简为k k k k k E x β2211)(2=++=(4)
式中)()(2222x k V x k +
==β(5)0...000 (000)
..................00...R -0
00...00 (01)
221
=E R R E E R E R
R E N
N ααααα(6)式(6)为对应的久期方程.式中)(2;)(222
x k V R x R k +==α=(7)
将相对复杂的方程就转化为解久期方程的问题,即使维数再高也是容易求解的.
收稿日期:35
作者简介:刘晓军(),男,黑龙江富裕人,副教授,硕士,从事理论物理与数值模拟研究.:xj @632010-0-01972-E-mail l http://www.doczj.com/doc/7707eab9b0717fd5370cdc17.html