久期方程 matlab,有限差分法解薛定谔方程与MATLAB实现

第30卷

第3期高师理科学刊Vol.30No.32010年5月Journal of Science of Teachers ′College and University May 2010

文章编号:1007-9831(2010)03-0068-03

有限差分法解薛定谔方程与

MATLAB 实现

刘晓军(齐齐哈尔大学理学院,黑龙江齐齐哈尔161006)

摘要:介绍了用有限差分法解薛定谔方程,以一维无限深势阱、含位势的一维无限深势阱为例求解,并应用M ATL AB 软件编程计算,模拟画出几率图形.

关键词:有限差分法;薛定谔方程;一维无限深势阱

中图分类号:O413.1文献标识码:A doi :10.3969/j.issn.1007-9831.2010.03.022

在量子力学中求解薛定谔方程是一个重要的问题,但在实际问题中往往很难确定解析解,这样利用数值方法求数值解就有一定的优势和实际意义[1].还可以利用计算机手段给出形象化分析,更有利于理解和应用.根据有限差分法中的二阶微分中心差分算符(其中忽略3x 及更高阶项)

[2]222

)()(2)()(d d x x x f x f x x f x f x

++=(1)

可将一维定态薛定谔方程[3])()()()(d d 22

2

2x E x x V x x =+=(2)化为)(])([)(2)()(2)(22x E x V x x x x x x =++=

(3)以点x n x n =(N n ....3,2,1=)将坐标分为N 个相等的间隔,当N 充分大时,x 就足够小.将第k 个分点的波函数简记为)(x k k =[4].同时满足条件

00==n ,则式(3)化简为k k k k k E x β2211)(2=++=(4)

式中)()(2222x k V x k +

==β(5)0...000 (000)

..................00...R -0

00...00 (01)

221

=E R R E E R E R

R E N

N ααααα(6)式(6)为对应的久期方程.式中)(2;)(222

x k V R x R k +==α=(7)

将相对复杂的方程就转化为解久期方程的问题,即使维数再高也是容易求解的.

收稿日期:35

作者简介:刘晓军(),男,黑龙江富裕人,副教授,硕士,从事理论物理与数值模拟研究.:xj @632010-0-01972-E-mail l http://www.doczj.com/doc/7707eab9b0717fd5370cdc17.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值