- 博客(21)
- 收藏
- 关注
原创 C语言中的结构体
文章目录一、从数组到结构体二、结构体声明三、结构体类型变量定义1.紧跟结构体声明后进行定义2.紧跟无名结构体类型后进行定义3.先声明结构体类型,再进行变量定义4.使用typedef先声明再用新的类型名进行定义四、结构体变量初始化五、结构体的引用六、函数与结构体1.向函数传递整个结构体变量中的数据2.向函数传递结构体的地址3.向函数传递结构体数组名4.结构体数组名和传递整个结构体变量对比提示:以下是本篇文章正文内容,下面案例可供参考一、从数组到结构体 c语言中,数组是有序数据的集合并且数组中的每个
2021-09-04 18:15:18 431
原创 C语言函数如何返回数组
文章目录一、静态数组和动态数组1.静态数组的缺点2.动态内存分配与动态数组2.1 动态内存分配2.2 动态数组2.3 内存与堆与栈二、自定义函数返回数组1.常见错误2.返回数组的函数三. 总结四. 参考提示:以下是本篇文章正文内容,下面案例可供参考一、静态数组和动态数组1.静态数组的缺点1.数组长度必须事先制定,不能为变量,必须为常整数;2.传统定义的数组,其内存无法被程序员手动释放。在函数运行期间,系统为其分配的内存一直存在,直到函数运行结束,其内存被系统自动释放;3.数组的长度一定固定,.
2021-08-21 17:52:21 17725 2
原创 多层感知机的代码实现+注释
文章目录前言第一步.读取数据第二步.搭建多层感知机第三步.训练第四步.可视化误差函数总结前言本文是训练多层感知机的代码实现,具体原理及推导请看BP神经网络原理(详细推导)。提示:以下是本篇文章正文内容,下面案例可供参考第一步.读取数据import osimport structimport numpy as npimport matplotlib.pyplot as pltdef getMNIST(kind = 'train'): #Get current path
2021-07-21 18:22:12 1903
原创 BP神经网络原理(详细推导)
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言第一步:正向传播激活神经网络A.变量说明B.正向传播C.偏置单元二、误差逆向传播1.理解误差逆向传播2.梯度检测3.初始化的重要性总结前言BP神经网络(Back propagation neural network)全称为多层前馈神经网络,其用于解决非线性问题。整个神经
2021-07-21 00:46:52 9373 5
原创 主成分分析和协方差矩阵
前言:本文主要介绍机器学习中的无监督学习数据降维方法:主成分分析法。主成分分析法是一种无监督学习的线性变换技术,用于数据的特征提取和降维。本文主要介绍主成分分析的相关理论,并三种方法实现主成分分析:分别是通过scikit-learn库实现主成分分析,numpy库实现主成分分析以及通过spss软件实现主成分分析。理论分析:理解好理论的推导需要一定的数学知识基础,我在这里罗列下来:线性空间理论协方差矩阵拉格朗日乘子法我们提到主成分分析是一种降维的方法,所谓降维就是把很多个随机变量降到我们想要
2021-07-15 10:55:06 4476
原创 数理统计之协方差矩阵
前言:本文介绍数理统计和机器学习中的一个非常重要的概念:协方差矩阵(即随机变量的数字特征)。理解好这个概念将有助于对机器学习的相关内容如:主成分分析(即PCA:Principal Component Analysis),线性判别分析(即LDA:Linear Discriminant Analysis)的学习。方差:方差(variance)的数学定义为:D(X)=E[X−E(X)]2D(X)={E[X-E(X)]^2}D(X)=E[X−E(X)]2其中E(X)E(X)E(X)是随机变量的均值也就是
2021-07-14 20:09:23 2561
原创 C语言基本输入输出
文章目录前言一、数据类型二、基本输入1.printf函数的基本用法2.printf函数的格式化输出A. d 格式符B. c 格式符C. f 格式符D. e 格式符3.putchar函数的基本用法三、基本输入1.scanf函数的基本用法A. scanf含有非输入控制符B. 多个scanf同时使用总结前言本文主要介绍C语言如何实现把数据进行输入输出并列举一下常见的小错误。提示:以下是本篇文章正文内容,下面案例可供参考一、数据类型众所周知,计算机中的数据是存放在存储单元中的,数据是由010101…组
2021-07-03 13:54:49 3467
原创 一维无限深势阱定态薛定谔方程
项目场景:本文介绍使用龙格-库塔法(Runge-Kutta method)和弦截法(Secant method)求解一维无限深势阱的定态薛定谔方程的本征值(eigenvalue)和本征函数( eigenfunction ),并进行可视化。/font>模拟环境Jupyter Notebookpython3(numpy,matplotlib)理论基础:1.薛定谔方程1.力场中粒子的薛定谔方程( Schrödinger equation)−ℏ22m∇2Ψ+V(r⃗)Ψ=EΨ(1)\b
2021-05-27 14:26:46 6487 1
原创 Matlab的常见函数
项目场景:本文对Matlab的常见函数语法进行总结,后续会不断更新!!A.重置矩阵维度:SyntaxDescriptionB = permute(A,dimorder)依据dimorder向量的序号,将A进行维度变换到B,>> rand(4,3,2)ans(:,:,1) = 0.8147 0.6324 0.9575 0.9058 0.0975 0.9649 0.1270 0.2785 0.15
2021-05-21 23:40:57 718
原创 FDTD基本用法
文章目录前言一、运行仿真软件1.模式转换2.运行仿真文件3.配置resource manager4.检查证书二、添加仿真对象1.仿真区域2.添加仿真对象总结前言本文主要介绍Lumerical脚本语言和fdtd的一些用法,后续会不断更新。一、运行仿真软件1.模式转换语法描述switchtolayout;从ANALYSIS模式转换到LAYOUT模式,用于修改仿真对象,会丢失ANALYSIS模式的结果?layoutmode;LAYOUT模式返回1,ANALYSIS.
2021-05-16 17:39:45 11356 7
原创 Matlab模拟电偶极子场强分布
项目场景:问题描述:.提示:这里描述项目中遇到的问题:例如:数据传输过程中数据不时出现丢失的情况,偶尔会丢失一部分数据APP 中接收数据代码:@Override public void run() { bytes = mmInStream.read(buffer); mHandler.obtainMessage(READ_DATA, bytes, -1, buffer).sendToTarget(); }
2021-05-13 14:08:21 17917 3
原创 数据分析之Matplotlib
项目场景:提示:这里简述项目相关背景:例如:项目场景:示例:通过蓝牙芯片(HC-05)与手机 APP 通信,每隔 5s 传输一批传感器数据(不是很大)问题描述:提示:这里描述项目中遇到的问题:例如:数据传输过程中数据不时出现丢失的情况,偶尔会丢失一部分数据APP 中接收数据代码:@Override public void run() { bytes = mmInStream.read(buffer); mHandler.obta
2021-04-27 20:36:08 180
原创 抓取天猫网商品信息
项目场景:本文以天猫网和淘宝网为例介绍抓取数据的一般做法,利用requests库和BeautifulSoup库抓取淘宝网和天猫网的商品信息,进行数据采集,与利用Selenium库进行抓取做对比。请求分析:首先打开Google Chorme打开天猫网,搜索商品(以iphone为例),打开inspect页面,观察到NetWork选项卡下的Document类型文件,再点开Doc(图中红色圈),找我们需要的Doc;其次,在找到的Doc中找到浏览器请求的Headers,这里面有浏览器的请求属性,我们可
2021-04-13 22:51:40 1235 2
原创 抓取淘宝网商品信息
项目场景:本文主要介绍利用selenium库对动态渲染页面的抓取,并介绍一些反爬的操作,以淘宝网为例。问题描述:提示:这里描述项目中遇到的问题:例如:数据传输过程中数据不时出现丢失的情况,偶尔会丢失一部分数据APP 中接收数据代码:@Override public void run() { bytes = mmInStream.read(buffer); mHandler.obtainMessage(READ_DATA, byte
2021-04-09 18:16:08 2498 7
原创 数据聚合与分组
文章目录前言一、groupby机制总结前言一、groupby机制介绍完pandas的用法之后,我们再谈谈数据聚合与分组操作,此操作用于Series,DataFrame或其他数据结构(即含有数据的对象),根据自己提供的一个或者多个‘键’,在特定的轴向(axis=0或1)进行分组,分组之后通过使用函数(如sum,mean函数等)得到各个组的一些特征(和,中位数等),然后再将这些结果联合形成一个对象,可以参考下图加深理解;DataFrame.groupby(by=None, axis=0, l.
2021-04-02 18:11:56 541
原创 抓取今日头条spaceX图片(Ajax实例)
文章目录前言一、Ajax分析第一步第二步第三步第四步二、代码实现1.实现对页面的数据请求2.处理返回数据进行数据提取,存贮总结前言本文以前文Ajax爬虫基本原理为理论基础,用python实现爬取今日头条图片(以spaceX为例,可任意选择)提示:以下是本篇文章正文内容,下面案例可供参考一、Ajax分析第一步以Google浏览器和今日头条网页版为例,打开网页版今日头条,搜索‘spaceX’,打开开发者工具,之前一般网页的爬取需要在Elements中进行结构性数据采集,但是Ajax的数据采集区域
2021-03-18 23:18:47 422 4
原创 数据分析之pandas
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录前言一、pandas是什么?二、1.数据表创建A.一维情形Series,创建Series对象可以通过传入list列表,dic字典或者numpy的nadarry对象B.二维情形,DataFrame2.数据表存载3.数据表索引与切片A.单元素索引B.列索引总结前言提示:以下是
2021-03-16 21:39:52 384
原创 数值方法求解微分方程
文章目录前言一、欧拉法1.一阶微分方程2.二阶微分方程相空间总结:未完待续!前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。一、欧拉法欧拉法:是一种微分方程的数值计算方法,其基本思想是迭代。所谓迭代,就是逐次替代,最后求出所要求的解,并达到一定的精度。误差可以很容易地计算出来。下面分别介绍欧拉法求解一阶微分方程,二阶微分方程的matlab程序实现。1.一阶微分方程{dy(t)d
2021-03-11 16:31:37 5349
原创 数据分析之numpy
文章目录前言一、numpy是什么?二、数组与向量化计算1.创建数组1.利用numpy.array()包装2.利用numpy.arange()3.利用numpy.linsapce()4.特殊类型5.数组属性2.索引与切片1.一维情形2.二维和多维情形3.布尔索引3.数组保存与导入4.数组计算前言numpy,pandas,matplotlib是python进行数据分析的三大利器,本文主要介绍关于numpy基础部分内容,后续文章会介绍pandas,matplotlib的内容。提示:以下是本篇文章正文内
2021-03-02 22:30:20 360
原创 Ajax基本原理
文章目录一、Ajax是什么?二、Ajax实现步骤1.创建XMLHttpRequest对象2.由向服务器发送请求3.服务器响应4.XHR readyStateAjax实例一、Ajax是什么?Ajax,全称为Asychronous Javascript and XML,异步 JavaScript 和 XML.它是一种浏览器的请求方式,可以保证在页面无需刷新更新数据和不更改链接的条件下,浏览器与服务器进行数据交换进而更新网页。具体而言,比如我们用的微博,今日头条App等,我们只需要向下滚动就可以获得新的
2021-03-01 11:20:27 376
翻译 python内置函数之format()
str.format() 是python的一种新型字符串格式化函数,通过‘{}’和‘:’替代之前的‘%’字符串格式化方法。具体方法如下:A.通过位置传递变量print('{0},{1},{2}'.format('Mercury','Earth','Mars'))Mercury,Earth,Marsprint('{2},{1},{0}'.format('Mercury','Earth','Mars'))Mars,Earth,Mercuryprint('{0},{0},{0}'.format('
2021-02-26 22:34:10 862
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人