二元函数最大最小值定理证明_2021考研数学 高数第3章 微分中值定理及导数应用...

82115f56b8e7dfbacc20f937bd9f2527.png

目录

  • 目录
  • 1. 背景
  • 2. 微分中值定理
    • 2.1. 费马引理
    • 2.2. 罗尔定理
    • 2.3. 拉格朗日中值定理
    • 2.4. 柯西中值定理
    • 2.5. 皮亚诺型余项泰勒公式
    • 2.6. 拉格朗日型余项泰勒公式
    • 2.7. 几个常用的泰勒公式(拉格朗日余项)
    • 2.8. 不等式的证明
  • 3. 导数应用
    • 3.1. 函数的单调性
    • 3.2. 函数的极值
    • 3.3. 函数的最大值和最小值
    • 3.4. 曲线的凹凸性
    • 3.5. 曲线的渐近线
    • 3.6. 函数的作图
    • 3.7. 曲线的弧微分与曲率
  • 4. 总结

1. 背景

前段时间复习完了高数第三章的内容,我参考《复习全书·基础篇》和老师讲课的内容对这一章的知识点进行了整理,形成了这篇笔记,方便在移动设备上进行访问和后续的补充修改。

2. 微分中值定理

2.1. 费马引理

设函数

在点
处可导,如果函数
在点
处取得极值,那么
.

2.2. 罗尔定理

如果

满足以下条件
  1. 在闭区间
    上连续
  2. 在开区间
    内可导
  3. ,

则在

内至少存在一点
,使得
.

c070ebb26ae6ac9a2cd875fa2539156f.png

2.3. 拉格朗日中值定理

  • 定义

如果

满足以下条件
  1. 在闭区间
    上连续
  2. 在开区间
    内可导,

则在

内至少存在一点
,使得

4942deed46e1e1032f38fda492df7d9a.png

  • 证明

已知函数在闭区间

上连续,在开区间
内可导,构造辅助函数

可得

,又因为
上连续,在开区间
内可导,所以根据罗尔定理可得必有一点
,使得
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值