非线性解方程组c语言_08 -- 非线性有限元分析方法

到目前为止,讨论的都是线性问题,这里采用了两个基本假设:

(1)材料的应力-应变关系是线性的,{σ}=[D]{ε}

(2)结构的应变-位移关系是线性的,{ε}=[B]{δ}

非线性有限元分析方法大同小异,以材料非线性为例:

(1)当材料的应力-应变关系是非线性时,刚度矩阵不是常数,与位移值有关,可记为:[K(δ)]

(2)此时,结构的整体平衡方程为:{Ψ}=[K(δ)]{δ}-{P}=0

增量法

采用增量法分析非线性问题时,把荷载划分为许多荷载增量,这些增量可以相等,也可以不等。每次施加一个荷载增量,在每一步计算中,假定方程是线性的,刚度矩阵[K]是常数。在不同的荷载增量中,刚度矩阵可以具有不同的数值,并与应力-应变关系相对应。每步施加一个荷载增量{△P},得到一个位移增量{△δ},累积后即得到位移{δ}。

增量法是用一系列线性问题去近似非线性问题,实质上是用分段线性的折线去代替非线性曲线。

8bb30c4c842b97aeaab969e7635bedfb.png

把荷载分为n个增量,所以总荷载为:

equation?tex=%5Cleft%5C%7B+P+%5Cright%5C%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%7B%5CDelta+P_%7Bj%7D%7D

在施加第i个荷载增量后,荷载为:

equation?tex=%5Cleft%5C%7B+P_%7Bi%7D+%5Cright%5C%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bi%7D%7B%5CDelta+P_%7Bj%7D%7D

每一个荷载增量

equation?tex=%5Cleft%5C%7B+%5CDelta+P_%7Bj%7D+%5Cright%5C%7D 产生一个位移增量
equation?tex=%5Cleft%5C%7B+%5CDelta+%5Cdelta_%7Bj%7D+%5Cright%5C%7D 和应力增量
equation?tex=%5Cleft%5C%7B+%5CDelta+%5Csigma_%7Bj%7D+%5Cright%5C%7D ,因此在施加第i个荷载增量后,位移和应力分别为:

equation?tex=%5Cleft%5C%7B+%5Cdelta_%7Bi%7D+%5Cright%5C%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bi%7D%7B%5CDelta+%5Cdelta_%7Bj%7D%7D

equation?tex=%5Cleft%5C%7B+%5Csigma_%7Bi%7D+%5Cright%5C%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bi%7D%7B%5CDelta+%5Csigma_%7Bj%7D%7D

至于如何由荷载增量

equation?tex=%5Cleft%5C%7B+%5CDelta+P_%7Bi%7D+%5Cright%5C%7D 计算位移增量
equation?tex=%5Cleft%5C%7B+%5CDelta+%5Cdelta_%7Bi%7D+%5Cright%5C%7D 和应力增量
equation?tex=%5Cleft%5C%7B+%5CDelta+%5Csigma_%7Bi%7D+%5Cright%5C%7D ,有以下几种不同的方法。

一、始点刚度法

设第i-1步末的应力

equation?tex=%5Cleft%5C%7B+%5CDelta+%5Csigma_%7Bi-1%7D+%5Cright%5C%7D已求出,结合应力-应变关系可以确定第i-1步末的弹性矩阵
equation?tex=%5Cleft%5B+D_%7Bi-1%7D+%5Cright%5D ,从而可以计算出第i-1步末的刚度矩阵
equation?tex=%5Cleft%5B+K_%7Bi-1%7D+%5Cright%5D 。然后,假定在第i步内的刚度矩阵保持不变并近似地等于
equation?tex=%5Cleft%5B+K_%7Bi-1%7D+%5Cright%5D ,于是,由下列方程可计算出第i步的位移增量
equation?tex=%5Cleft%5C%7B+%5CDelta+%5Cdelta_%7Bi%7D+%5Cright%5C%7D

equation?tex=%5Cleft%5C%7B+%5CDelta+%5Cvarepsilon_%7Bi%7D+%5Cright%5C%7D%3D%5Cleft%5B+B_%7Bi%7D+%5Cright%5D%5Cleft%5C%7B+%5CDelta+%5Cdelta_%7Bi%7D+%5Cright%5C%7D
equation?tex=%5Cleft%5C%7B+%5CDelta+%5Csigma_%7Bi%7D+%5Cright%5C%7D%3D%5Cleft%5B+D_%7Bi%7D+%5Cright%5D%5Cleft%5C%7B+%5CDelta+%5Cvarepsilon_%7Bi%7D+%5Cright%5C%7D

equation?tex=%5Cleft%5C%7B+%5Cdelta_%7Bi%7D+%5Cright%5C%7D%3D%5Cleft%5C%7B+%5Cdelta_%7Bi-1%7D+%5Cright%5C%7D%2B%5Cleft%5C%7B+%5CDelta+%5Cdelta_%7Bi%7D+%5Cright%5C%7D
equation?tex=%5Cleft%5C%7B+%5Csigma_%7Bi%7D+%5Cright%5C%7D%3D%5Cleft%5C%7B%5Csigma_%7Bi-1%7D+%5Cright%5C%7D%2B%5Cleft%5C%7B+%5CDelta+%5Csigma_%7Bi%7D+%5Cright%5C%7D

根据第i步的总应力

equation?tex=%5Cleft%5C%7B+%5Csigma_%7Bi%7D+%5Cright%5C%7D ,修正材料弹性常数,求出相应的单元刚度矩阵和整体刚度矩阵
equation?tex=%5Cleft%5B+K_%7Bi%7D+%5Cright%5D,准备施加下一步荷载增量
equation?tex=%5Cleft%5C%7B+%5CDelta+P_%7Bi%2B1%7D+%5Cright%5C%7D

如果是最后一级荷载,则结束运算;如果不是,则进行下一步计算。

如果

equation?tex=%5Cleft%5C%7B+%5Cdelta_%7Bi%7D+%5Cright%5C%7D 是精确解的话,应该满足下式:

{Ψ}=[K(δ)]{δ}-{P}=0

而实际上

equation?tex=%5Cleft%5C%7B+%5Cdelta_%7Bi%7D+%5Cright%5C%7D只是近似解,带入上式后有:
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值