一、修改配置HDFS运行模式和运行时目录 core-site.xml 我的修改如下(配置文件都在(/opt/installed/hadoop-2.7.3/etc/hadoop目录下)):
配置hdfs-site.xml
配置hadoop-env.sh
配置yarn yarn-env.sh
配置yarn-site.xml
配置maped-site.xml
你会发现没有mapred-site.xml我们需要把mapred-site.xml.template改为mapred-site.xml命令如下:
sudo mv mapred-site.xml.template mapred-site.xml
配置maped-env.sh
配置历史服务
配置日志功能在yarn-site.xml添加下列内容
格式化Namenode
启动Namenode使用jps检查是否成功如下图启动成功
启动Datanode
使用jps查看是否启动成功
接下来启动resourcemanager
启动nodemanager
启动历史服务
以上都是单点启动
启动dfs服务和yarn服务的另外方式
# 开启dfs,包括namenode,datanode,secondarynamenode服务
sbin/start-dfs.sh
# 开启yarn,包括resourcemanager,nodemanager
sbin/start-yarn.sh
# 开启所有的服务(过时)
sbin/start-all.sh
hdfs的web客户端是http://192.168.32.20:50070(如果不能访问在其他一切正常的情况下关闭虚拟机防火墙)
YARN的Web客户端端口号是8088,通过http://192.168.32.20:8088/可以查看
运行MapReduce Job
在Hadoop的share目录中,自带jar包,里面有一些MapReduce的例子,位置在share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar。wordCount为例。
首先在hdfs创建输入目录
bin/hdfs dfs -mkdir -p /wordcounttest/input
创建测试文件wc.input,内容如下:
创建data目录
mkdir data
进入data目录
cd data
创建wc.input
vim wc.input
在文件中输入,如下内容
hadoop mapreduce hive
hbase spark storm
sqoop hadoop hive
spark hadoop
将wc.input文件上传到HDFS的/wordcounttest/input目录下:
bin/hdfs dfs -put data/wc.input /wordcounttest/input
查看/wordcounttest/input目录
bin/hdfs dfs -ls /wordcounttest/input
运行WordCount MapReduce Job
bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.5.jar wordcount /wordcounttest/input /wordcounttest/output
查看输出结果目录
bin/hdfs dfs -ls /wordcounttest/output
文章如有侵权,请联系公众号删除
作者:fly1157932256