3西格玛的计算原理:
±σ时,68.26% ±2σ时,95.46%,±3σ时,99.73%
σ越大,越“矮胖”,σ越小,越瘦小。
关于±3σ时,为什么良率是99.73%的推导: 概率论和数理统计 46页
正态分布的概率密度函数:
当μ=0,σ=1时,称随机变量X服从标准正态分布,其概率密度和分布函数分别为用
,Ф(x)表示:
推导公式略
P{μ-σ
=Ф(1)-Ф(-1)=Ф(1)-{1-Ф(1)}=2Ф(1)-1=2*0.8413-1=0.6826
P{μ-2σ
=Ф(2)-Ф(-2)=Ф(2)-{1-Ф(2)}=2Ф(2)-1=2*0.9772-1=0.9544
P{μ-3σ
=Ф(3)-Ф(-3)=Ф(3)-{1-Ф(3)}=2Ф(3)-1=2*0.9987-1=0.9974
我想这也解释了为什么要用它来衡量品质的好坏,因为它和良率息息相关!
为什么6西格玛时,Cpk=2?
这个问题应该是为什么Cpk=2时,可以达到6西格玛。
先看一下Cp,Cpk的公式:
Cp=T/6σ;
Cpu=(USL-Xbar)/3σ;
Cpl=(Xbar-LSL)/3σ;
其中T是工程公差,σ是标准差,Xbar是平均值,USL,LSL是公差上限和公差下限。
从公式可以看出,当Cpk=2时,Cpu或者Cpl=2,USL-Xbar=3σ*2=6σ,从下面这个表就可以看出当USL和Xbar之间的距离达到6σ时的情形。
当+/-6σ时,良率。。。。自己看
当考虑1.5σ偏移,良率百万分之3.4