python需要数学很好吗_可能是史上最全的机器学习和Python(包括数学)速查表

新手学习机器学习很难,就是收集资料也很费劲。所幸Robbie Allen从不同来源收集了目前最全的有关机器学习、Python和相关数学知识的速查表大全。强烈建议收藏!

ae70f79baec46c1e247e87de56b55ba8.png

机器学习有很多方面。 当我开始刷新这个主题时,我遇到了各种“速查表”,仅仅列出了需要知道的给定主题的所有要点。 最后,我收集了与机器学习相关的速查表。有些我经常参考,认为其他人也可能从中受益。因此, 这篇文章把我在网上发现的很好的27个速查表分享出来,以供大家参考。

机器学习(Machine Learning)

有不少有用的流程图和机器学习算法表。 这里只包括所发现的最全面的速查表。

神经网络架构(NeuralNetwork Architectures)

来源:http://www.asimovinstitute.org/neural-network-zoo/

8bd84b728ca16d55dbb05b0c61b8569e.png

Microsoft Azure算法流程图(Microsoft AzureAlgorithm Flowchart)

来源:https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

16f988250b103fb7f5d86c29e6088a46.png

SAS算法流程图(SAS Algorithm Flowchart)

来源:http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

db0884dc7486dd4308845621da1f2dd7.png

823a725af1bfe357dbd6825dcacf22c6.png

算法总结(AlgorithmSummary)

来源:http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

f055e669549d4606930e69160c0ba94b.png

来源: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/

36f33df42fe97c1f9f3312074ac250a7.png

算法优缺点(AlgorithmPro/Con)

来源:https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

2b0b5e4b4da38f371f0561be3f2c5b39.png

Python

当然Python有很多在线资源。 对于本节只包括所遇到的最好的速查表。

算法(Algorithms)

来源:https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/

e66f08c3b96889d5eb75694224ec5a40.png

Python基础(Python Basics)

来源:http://datasciencefree.com/python.pdf

3b8a3ce215dc0bfb82dd375513d4b338.png

来源:https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA

e7a7c989bc6c7e8db8d98c145463c0e8.png

Numpy

来源:https://www.dataquest.io/blog/numpy-cheat-sheet/

89799f1d660b952e13fdf06cec127345.png

来源:http://datasciencefree.com/numpy.pdf

a5d75c1e4128c71b6f7a2eba9ea058fb.png

来源:https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE

3a87e07357db87d45bc211c9f78524e4.png

来源:

https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb

7d4dc1c60b5d1df8e69978ecf4fdefe9.png

Pandas

来源:

http://datasciencefree.com/pandas.pdf

abb6c9071be6dd1035cf1a8c8190de60.png

来源:https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U

d54fd581513437602dbbc30d51fdc5b5.png

来源:

https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb

b9cf39cc2d6b47b2f696335682974338.png

Matplotlib

来源:https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet

da36caa964c870fd707a1cb8e5256421.png

来源:https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb

8ef5784092a726eeacb3679c0dbb42c4.png

Scikit Learn

来源:http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html

0a36942efecbc76c0f9b2aea4b664f75.png

来源:http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html

8d3813f18cdc2aaa9af2e89f9aaec3fb.png

来源:

https://github.com/rcompton/ml_cheat_

sheet/blob/master/supervised_learning.ipynb

2b42e99581cab3df2615f85e0eb79464.png

Tensorflow

来源:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

f79fd8c330e8a80330c39f7398630faa.png

Pytorch

来源:https://github.com/bfortuner/pytorch-cheatsheet

bf7f833f0dc30de71eda96b4ed2cee10.png

数学(Math)

如果你真的想了解机器学习,那么需要对统计(特别是概率)、线性代数和微积分的理解打下坚实的基础。在本科期间我辅修数学,但是我肯定需要复习这些知识。 这些速查表提供了大多数需要了解最常见的机器学习算法背后的数学。

概率(Probability)

来源:

http://www.wzchen.com/s/probability_cheatsheet.pdf

25616d934b7b88d496ca2c796cd45b3e.png

线性代数(Linear Algebra)

来源:

https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf

915bbf12328bb1b5d219b67ecc97bab4.png

统计学(Statistics)

来源:

http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf

82230b6ad222f7ce6299f405f7517e69.png

微积分(Calculus)

来源:http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

df216f13c1042f60c88849e01ddc5ed3.png

如果你想要所有的速查表,我把作者创建的包含所有27个速查表的zip文件搬到了墙内。网盘:https://pan.baidu.com/s/1hs7n8LQ 提取密码:bvq1 。欢迎下载!

原文参考:点击阅读全文可见(需FQ)。

「网路冷眼」,搜索「网路冷眼」即可关注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值