一、实验目的 (1)加深对频率采样法设计FIR数字滤波器的基本原理的理解。 (2)掌握在频域优化设计FIR数字滤波器的方法。 (3)学习使用MATLAB语言提供的fir2子函数设计FIR数字滤波器。 二、实验涉及的MATLAB子函数 fir2 功能:基于频率样本法的FIR滤波器设计,用于任意频率响应的加窗数字FIR滤波器的设计。 格式: ※b=fir2(n,f,m);设计一个n阶的FIR滤波器,其滤波器的频率特性由矢量f和m决定。 ·f为频率点矢量,且f∈[0,1],当f=1时,相应于0.5Fs。矢量f中按升序排列,且第一个必须为0,最后一个必须为1,并允许出现相同的频率值。 ·矢量m中包含与f相对应的期望滤波器响应幅度。 ·矢量f和m的长度必须相同。 ※b=fir2(n,f,m,Windows);可将列矢量Windows中指定的窗函数用于滤波器设计,如省略Windows,则自动选取Hamming窗。 三、实验原理 1.频率采样法的基本原理 设计滤波器时,通常给出的是幅频特性的技术指标要求,可直接在频域进行处理,按照理想的频率特性H(ejw),在w=0到2p之间等间隔采样N点,得到: H(k)=H(ejw)|w=2kp/N k=0,1,2,…,N-1 然后用H(k)的傅里叶逆变换作为滤波器的系数: b(n)=h(n)=IDFT[H(k)] 构成一个系统传递函数为的实际的FIR数字滤波器,这种设计方法称为频率采样法。其中H(z)与H(k)的关系符合内插公式,即 在使用频率采样法设计FIR数字滤波器时,应注意下列问题: (1)根据频域抽样定理,被采样的理想频率特性其采样点数N与滤波器的长度M应满足N≥M,否则将造成混叠(见实验16)。本实验取N=M。 (2)为保证滤波器的系数为实序列,作为复数序列的理想频率特性应具有共轭对称性,幅度特性应为偶函数,相位特性应为奇函数。注意,必须在0~2p的全频段上才能观察到其对称图形。习惯上,我们一般利用其对称性,只作0~p频段上的图形。 (3)理想频率特性的相位特性应该与频率成线性关系,即满足线性相位的条件。 由于第一类线性相位滤波器(类型Ⅰ)能进行低通、高通、带通、带阻滤波器的设计,因此本实验所有滤波器均采用第一类线性相位滤波器,即在时域脉冲响应满足h(n)=h(N-n-1),N为奇数;此时,如果在频域用H(k)=A(k)ejq(k)表示对理想频率特性的等间隔采样,则有: 线性相位条件 符幅特性条件 同理,对于第二、三、四类线性相位滤波器,读者可以自行找出线性相位条件和符幅特性对称条件,进行滤波器的设计。 2.频率采样法设计数字滤波器的方法及采样点数对滤波器特性的影响 例25-1 用频率采样法设计一个FIR数字低通滤波器,3 dB截止频率wc=0.4p,采样点数分别取N=21和N=61,分别显示其幅频特性和脉冲响应曲线,观察采样点数对滤波器特性的影响。 解 输入N=21,若需观察0~2p频段上理想的频率特性,则程序如下: N=21;n=0:N-1;wc=0.4*pi; %输入N、截止频率 N1=fix(wc/(2*pi/N)); %样点间隔为2*pi/N,N1为wc的样点数 N2=N-2*N1-1;%N2为阻带样点数 A=[ones(1,N1+1),zeros(1,N2),ones(1,N1)]; %建立符幅特性样本序列 theta=-pi*(N-1)/N*[0:N-1];%建立相位特性样本序列 wa=[0:N-1]/N*2;[KG-2]%为作图建立对应的频率向量 subplot(2,1,1),plot(wa,A,¢.-¢); axis([0,2,-0.1,1.2]);title(¢理想幅频响应及样点序列(N=21)¢); xlabel(¢频率(单位:\pi)¢);ylabel(¢H(e^{j\omega})¢); subplot(2,1,2),plot(wa,theta,¢.-¢); axis([0,2,-90,1]);title(¢理想相频响应及样点序列(N=21)¢); xlabel(¢频率(单位:\pi)¢);ylabel(¢\phi(\omega)¢); 理想的幅频和相频特性曲线如图25-1所示。由图形可见,该滤波器特性符合幅度特性为偶函数,相位特性为奇函数的特点。下面例题的频率特性不再使用全频段,仅在0~p频段上显示特性曲线。 图25-1 在0~2p区间理想的数字低通滤波器幅频特性与相频特性 将理想的幅频特性和实际的幅频特性在同一
用MATLAB设计FIR数字滤波器实验,数字信号处理实验(MATLAB版)实验25用频率采样法设计FIR数字滤波器.ppt...
最新推荐文章于 2023-11-21 20:20:55 发布