说到相关分析,我们都知道是用来观察变量之间相关性的一种分析方法,而得出的结果很难用表格形象展示,这个时候我们的相关性图形就派上了用场,那么接下来为大家介绍R语言情景下用mtcars数据集和corrplot包绘制相关性图形的方法
mtcars数据展示
mtcars数据说明:数据的第一列为各种汽车型号,后续数据为汽车的多个性能参数。
在相关性计算函数cor()中有三种算法来计算相关性,其中:
Pearson相关系数:适用于连续型变量,且变量服从正态分布的情况,为参数性的相关系数。
Spearman等级相关系数:适用于连续型及分类型变量,为非参数性的相关系数。
Kendall秩相关系数:适用于定序变量或不满足正态分布假设的等间隔数据。
小鹿本次采用pearson算法来计算相关系数
corr
相关性范围为[-1,+1],绝对值越大,表示相关性越强;相关系数的正负体现相关的方向,负值代表两变量呈负相关,正值代表变量间正相关。
相关性展示
参数的相关性结果有了,接下来就是用图形展示相关性的时候了:
首先是包的安装和载入:
install.packages("corrplot")
library("corrplot")
绘制相关性图:
corrplot(corr)
可以看到图形沿左上到右下的位置对称,各变量自身相关