r语言 相关性作图_R语言corrplot包相关性绘图代码......

本文介绍了如何在R语言中利用mtcars数据集和corrplot包进行相关性分析,包括Pearson相关系数的计算以及相关性图形的绘制与优化,如调整颜色、形状和显示相关系数等。
摘要由CSDN通过智能技术生成

说到相关分析,我们都知道是用来观察变量之间相关性的一种分析方法,而得出的结果很难用表格形象展示,这个时候我们的相关性图形就派上了用场,那么接下来为大家介绍R语言情景下用mtcars数据集和corrplot包绘制相关性图形的方法

mtcars数据展示

mtcars数据说明:数据的第一列为各种汽车型号,后续数据为汽车的多个性能参数。

在相关性计算函数cor()中有三种算法来计算相关性,其中:

Pearson相关系数:适用于连续型变量,且变量服从正态分布的情况,为参数性的相关系数。

Spearman等级相关系数:适用于连续型及分类型变量,为非参数性的相关系数。

Kendall秩相关系数:适用于定序变量或不满足正态分布假设的等间隔数据。

小鹿本次采用pearson算法来计算相关系数

corr

相关性范围为[-1,+1],绝对值越大,表示相关性越强;相关系数的正负体现相关的方向,负值代表两变量呈负相关,正值代表变量间正相关。

相关性展示

参数的相关性结果有了,接下来就是用图形展示相关性的时候了:

首先是包的安装和载入:

install.packages("corrplot")

library("corrplot")

绘制相关性图:

corrplot(corr)

可以看到图形沿左上到右下的位置对称,各变量自身相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值