计算机数值方法参考书,《计算机数值方法》实验指导书.pdf

《计算机数值方法》实验指导书

《计算机数值方法》

实验指导书

计算机科学与技术与学院计算机科学与技术系

第 1 页第 1 页第 1 页

《计算机数值方法》实验指导书

目 录

实验一 方程求根1

实验二 线性方程组的直接解法3

实验三 线性方程组的迭代解法8

实验四 代数插值9

第 2 页第 2 页第 2 页

《计算机数值方法》实验指导书

实验一 方程求根

【目的与要求】

1.了解方程求根的基本方法、基本原理、误差估计;

2 .能够按照工程实际要求,选择适当的算法;

3 .通过编写程序,进行算法设计和数值求解。

【实验内容】

1. 熟悉使用二分法、迭代法、牛顿法、割线法等方程求根的基本方法、基本原理、

误差估计的相关理论。

3 2

2. 选择方程求解方法中的两种方法求方程:f (x)=x +4x -10=0 在[1,2] 内的一个实

根,且要求满足精度|x *-x |<0.5×10-5 。

n

【示例程序】

增值寻根法又叫做逐步搜索法,是求解方程根的一种方法,也是初步确定方程隔

根区间的一种方法。增值寻根法的基本思想是:从初值x0 开始, 按规定的一个初始步

长 h 来增值:

x = x +h n=0,1,2,3 ……

n+1 n

同时计算f (xn+1)可能遇到三种情形:

(1) f (xn+1)=0 ,此时,xn+1 即为方程的根x *;

(2) f (x )*f (x )>0 ,说明[x , x ] 内无根;

n+1 n n+1 n

(3) f (x )*f (x )<0 ,说明[x , x ] 内有根;

n+1 n n+1 n

搜索过程,可从 a 开始,也可从 b 开始,这时应取更小的步长 h ,直到有根区间的

长度|x -x |

n+1 n n n+1 n n+1

就是满足精度的方程的近似根。

基于增值寻根法,设计程序如下:

#include

double fun(double x){

double y=x*x;

第 1 页第 1 页第 1 页

《计算机数值方法》实验指导书

return y*x+4*y-10;

}

void main(void) {

double x0=-4,x;

double h=1;

double step=0;

x=x0;

while(h>0.000001){

cout<

while(true){

step++;

if(fun(x)==0){

cout<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值