array用法 numpy_1.Python--numpy库

本文详细介绍了numpy库中的核心对象ndarray,包括ndarray的构造、属性、创建方法和元素访问。讨论了如何使用array、zeros、ones、empty等函数创建数组,并探讨了特殊二维数组的创建如diag、diagflat、tri等。此外,还详细阐述了ndarray的切片、多维数组的索引以及数组的运算和操作,强调了加减乘除在数组中的不同含义。最后,对比了numpy数组与Python列表和矩阵的区别,并提到了数组的合并、分割、复制等操作。
摘要由CSDN通过智能技术生成

0c8f1ab8e69ffb63d2cfb940da5ba42d.png

》》点赞,收藏+关注,理财&技术不迷路《《

目录:

95820055e5aaf8bd727374033fcac660.png

1.0 numpy基础——ndarray对象

ndarray(The N-dimensional array)对象是用于存放同类型元素的多维数组,是numpy中的基本对象之一,另一个是func对象。

1 、简单介绍ndarray对象;

2、ndarray对象的常用属性;

3、如何创建ndarray对象;

4、ndarray元素访问。

它的维度以及个维度上的元素个数由shape决定。

1.0.1 numpy.ndarray()

ndarray函数就是numpy的构造函数,我们可以使用这个函数创建一个ndarray对象。构造函数有如下几个可选参数:

c3732c27a5378664e33d526f2f667b82.png

1.0.2 ndarray对象的常用属性

ndarray对象最常用的属性:

74d95447b44186ad2a2d4f496e0a24c1.png

1.0.3 创建ndarray

array():

使用array函数,从常规的python列表或者元组中创建数组,元素的类型由原序列中的元素类型确定。

zeros(),ones(),empty():

函数ones创建一个全1的数组、函数zeros创建一个全0的数组、函数empty创建一个内容随机的数组,在默认情况下,用这些函数创建的数组的类型都是float64,若需要指定数据类型,只需要闲置dtype参数即可:

740415efc06bee40f4eda183e7f53913.png

zeros/ones/empty_like():

上述三个函数还有三个从已知的数组中,创建shape相同的多维数组:ones_like、zeros_like、empty_like,用法如下:

904f055fe3799a276af6c7e43ff4be32.png

还有如下几个特殊的函数:

f7d815bdd748cd69a8c435f73fd8ba4b.png

eye函数的全1的对角线位置有参数k确定

0902d73b9c807d6f42b443313713b6bb.png

arange(), linspace(), logspace():

arange函数类似python中的range函数,通过指定初始值、终值以及步长(默认步长为1)来创建数组

linspace函数通过指定初始值、终值以及元素个数来创建一维数组

logspace函数与linspace类似,只不过它创建的是一个等比数列,同样的也是一个一维数组

f5ddd6110e062412ab7a8b3825c57a06.png

fromstring() & fromfunction():

fromstring函数从字符串中读取数据并创建数组

fromfunction函数由第一个参数作为计算每个数组元素的函数(函数对象或者lambda表达式均可),第二个参数为数组的形状

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值