函数最值问题的常用解法_助力高考:十类方法解三角函数最值问题

十类方法,突破三角函数最值问题

三角函数的最值问题始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。解决三角函数的最值问题,不仅会用到三角函数的定义、单调性、奇偶性、周期性、对称性、有界性,而且还会用到三角函数的恒等变换;同时,在三角函数的最值问题中常常涉及到初等函数、不等式、方程、几何等方面问题;

一、常用公式

853c07f66b97f77c43b625c409b4d185.png

下面具体介绍十类解题方法

题型一、y=asinx+b 或 y=acosx+b

9b2edcd849f887f01b029cd855c17cdf.png
74051d02bad4104547700d2192613524.png

题型二、y=asinx+bcosx型

8c54580518574db97b695046a31800ee.png
2b478df9e212f5a7796d5d47cacf576d.png

题型三、转化二次函数(配方法)

cb38dde620bb7bae872f2ad5c598c67b.png

若函数表达式中只含有正弦函数或余弦函数,且它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理.

22ba3b6e00ec20b2eb2b483636571115.png

题型四、引入参数转化(换元法)

对于一些比较复杂的复合三角函数,直接运用三角公式转化比较困难。针对题型结构特点,可以通过变量替换,将原来的三角问题转化为代数问题。这样就将比较复杂的函数转化为更容易求最值的代数函数求解。

1ee64f85a22d140d5de2aa4e8e222fa9.png
c25bfad666004d94c184d7dd5cb54039.png
a9daedbfa4ad05d5af560b3766313ca4.png
ec7dd9a77856664930b1eb7660b2535f.png

题型五、基本不等式法

对于一些满足均值不等式特征结构的三角函数,可以运用均值不等式来解决此种类型的三角函数最值问题。均值不等式的一般形式:

9c8bd35f211fff9ce350fdf698e940c9.png

在运用均值不等式时,必须注意函数式中各项的正负,需要各项满足正值时方可使用,在解题时应加以论述说明;然后应该注意不等式中等号成立的条件、需要合理的拆添项,凑常数,以及不等式中和的最值与积的最值,

e265dfd33878e6489c80821c74daef77.png

题型六、利用函数在区间内的单调性

32d08406b9095013e000cadf0d8fe48d.png

题型七、转化为分式型

4dec95cf315ff816b39e25ba1daf69cd.png
3899fc094912f926625389ad88deeb19.png
bde421fffe6edc475be14ffed842f5c1.png

题型八、数形结合

6d2062cd8d3d839cd7ae513a6c7dce77.png

题型九、判别法

c70965e74c6396cd71125c79fe60b64a.png
7ca0c0dc5b941e3c4a674c2f8dad2b56.png

题型十、分类讨论

含参数的三角函数的值域问题,需要对参数进行讨论.

9583f752e238f8b6a95f5bb99ab0c85f.png
d58b9de49caccbf33dc954e394c84bf4.png

课后作业

6cf238ad3b05146dfa312e60b641c220.png
cb47021bb0deddb012ac3a6f9fcd176f.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值