Matlab中的小波分析工具箱(Wavelet Toolbox,Ver.1.0) Matlab小波分析工具箱提供了一个可视化的小波分析工具,是一个很好的算法研究和工程设计,仿真和应用平台。特别适合于信号和图像分析,综合,去噪,压缩等领域的研究人员。 小波分析工具箱的七类函数: 常用的小波基函数。 连续小波变换及其应用。 离散小波变换及其应用。 小波包变换。 信号和图像的多尺度分解。 基于小波变换的信号去噪。 基于小波变换的信号压缩。 常用的小波基函数: 怎样获取小波基的信息: 在Matlab窗口键入“waveinfo(‘参数名’) 计算小波滤波器系数的函数: 用于验证算法的数据文件: 连续小波变换: 格式: coefs=cwt(s,scales,’wname’) coefs=cwt(s,scales,’wname’,’plot’) 说明: s:输入信号 scales: 需要计算的尺度范围 wname:所用的小波基 plot: 用图像方式显示小波系数 例子: c = cwt(s,1:32,'meyr') c = cwt(s,[64 32 16:-2:2],'morl') c = cwt(s,[3 18 12.9 7 1.5],'db2') 一维离散小波变换: dwt [cA,cD]=dwt(X,’wname’) [cA,cD]=dwt(X,H,G) 其中:cA :低频分量, cD:高频分量 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器 多层小波分解: [A,L]=wavedec(X,N,’wname’) [A,L]=wavedec(X,N,H,G) 其中:A :各层分量, L:各层分量长度 N:分解层数 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器 其他的一维函数: 抽样: dyaddow 补零插值:dyaup 滤波器生成:qmf,orthfilt,wfilters 反变换:idwt,idwtper, 重构: upwlev,waverec,wrcoef, 二维离散小波变换: dwt2 [cA,cH,cV,cD]=dwt2(X,’wname’) [cA,cH,cV,cD]=dwt2(X,H,G) 其中:cA :低频分量, cH:水平高频分量 cV:垂直高频分量 cD:对角高频分量 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器 二维信号的多层小波分解: [A,L]=wavedec2(X,N,’wname’) [A,L]=wavedec2(X,N,H,G) 其中:A :各层分量, L:各层分量长度 N:分解层数 X:输入信号。 wname:小波基名称 H:低通滤波器 G:高通滤波器 其他的二维函数: 对变换信号的伪彩色编码:wcodemat 反变换:idwt2,idwtper2, 重构: upwlev2,waverec2,wrcoef2, 小波包分解: 树操作 小波包分析函数: 信号去噪与压缩: 在小波变换域上进行阀值处理。 其他的免费软件工具: Wavelab David Donoho在斯坦福大学开发的Matlab程序库,最新版本为Wavelab 0.802,有1200多个文件。 LastWave 小波信号和图像处理软件,用C语言编写,可在Unix和Macintosh上运行。 下载地址: 值得关注的几个发展方向: 提升小波变换(Lifting scheme wavelet transform) 多小波变换(Multiwavelet transform) 线调频小波变换(chirplet transform)。 提升小波变换(Lifting scheme wavelet transform) 多小波变换: 在图像处理和信号分析的实际应用中,我们需要小
matlab 绘制bior2 4小波基,Matlab中的小波变换工具箱讲课.ppt
最新推荐文章于 2024-09-17 17:34:02 发布