- 博客(66)
- 资源 (5)
- 收藏
- 关注
原创 ubuntu 20.04 4090 显卡驱动安装 深度学习环境配置
重启,进入boot模式,关闭Secure Boot。一般在高级选项中的boot,找到Secure Boot,换为disenable,保存并重启。华硕等其他最新主板要关闭安全启动,找到“密钥管理”进入。在密钥管理中,选择“清除安全启动密钥”,清除安全启动密钥,即可关闭。open:开源驱动;server:服务器专用,有更高的计算性能,深度学习推荐;另一个版本是桌面端,一般在笔记本安装。查看驱动是否安装成功。
2023-07-18 08:07:15 4278
原创 Could not find a version that satisfies the requirement numpy>=1.21.0
Could not find a version that satisfies the requirement numpy>=1.21.0。
2022-08-12 17:41:35 1961 1
原创 CMake基本语法(一)
是一种跨平台Make工具。写一个CMakeList.txt与平台无关的文件来定制整个编译流程。然后再根据目标用户的平台进一步生成所需的本地化Makefile和工程文件,如Unix的Makefile或Windows的VisualStudio工程。CMake是Qt6的默认构建系统,之前是qmake。如果CMakeLists.txt文件中,定义了变量VAR,那么在转化出来的文件中就会存在#defineVAR的语句。否则,在文件中就会显示。样例代码。.........
2022-07-21 10:14:20 3662
原创 PyTorch注意力机制【动手学深度学习v2】
1.生物学上的注意力机制动物需要 复杂环境下有效关注值得注意的点心理学框架:人类根据随意线索和不随意线索选择注意点举个例子:假如你面前有五个物品: 一份报纸、一篇研究论文、一杯咖啡、一本笔记本和一本书, 所有纸制品都是黑白印刷的,但咖啡杯是红色的。 换句话说,这个咖啡杯在这种视觉环境中是突出和显眼的, 不由自主地引起人们的注意。 所以你把视力最敏锐的地方放到咖啡上, 下图。由于突出性的非自主性提示的红杯子,被称为不随意线索。喝咖啡后,你会变得兴奋并想读书。 所以你转过头,重新聚焦你的眼睛
2022-05-16 22:53:52 1995
原创 现代循环神经网络-3.深层循环神经网络【动手学深度学习v2】
上一篇:现代循环神经网络-2.长短期记忆网络(LSTM)【动手学深度学习v2】文章目录3.深度循环神经网络3.深度循环神经网络在前面几篇文章中,只讨论了具有一个单向隐藏层的循环神经网络。 其中,隐变量和观测值与具体的函数形式的交互方式是相当随意的。 只要交互类型建模具有足够的灵活性,这就不是一个大问题。 然而,对于一个单层来说,这可能具有相当的挑战性。 之前在线性模型中,我们通过添加更多的层来解决这个问题。 而在循环神经网络中,我们首先需要确定如何添加更多的层, 以及在哪里添加额外的非线性,因此这个问
2022-05-03 21:18:33 1014
原创 现代循环神经网络-2.长短期记忆网络(LSTM)【动手学深度学习v2】
上一篇:现代循环神经网络-1.门控循环单元(GRU)【动手学深度学习v2】文章目录2. 长短期记忆网络2.1 输入门、忘记门和输出门2.2 候选记忆元2.3 记忆单元2.4 隐状态2.5 LSTM的代码实现2.6 LSTM的简洁实现2. 长短期记忆网络长短期记忆网络的设计灵感来自于计算机的逻辑门。 长短期记忆网络引入了记忆元(memory cell),或简称为单元(cell)。 有些文献认为记忆元是隐状态的一种特殊类型, 它们与隐状态具有相同的形状,其设计目的是用于记录附加的信息。 为了控制记忆元,我
2022-05-03 20:18:55 1106
原创 现代循环神经网络-1.门控循环单元(GRU)【动手学深度学习v2】
文章目录1.门控循环单元(GRU)1.1 门控隐状态A.重置门与更新门1.门控循环单元(GRU)GRU是一个比较新的提出来的,在LSTM之后提出,但是相比LSTM思想更简单一点,效果也差不多,但是GRU的计算速度比LSTM更快。在RNN中,太长的信息处理效果并不好,因为RNN将所有信息都放进隐藏单元里,当时间步很长时,隐藏状态可能累积了太多信息,对前面很久出现的信息可能就会被忽略或淡化。在一个序列中,不是每个观测值都是很重要的,而且序列的各个部分之间存在逻辑中断,例如书章节之间的过渡,为了解决这些问题
2022-05-03 14:58:18 1875
原创 【动手学深度学习v2】循环神经网络-4&5RNN与RNN的实现
文章目录4 循环神经网络4 循环神经网络潜变量自回归模型中,隐变量hth_tht与ht−1h_{t-1}ht−1和xt−1x_{t-1}xt−1有关,xtx_txt与hth_tht和xt−1x_{t-1}xt−1有关。更新隐藏状态:ht=ϕ(Whhht−1+Whxxt−1+bh)h_t=\phi(W_{hh}h_{t-1}+W_{hx}x_{t-1}+b_h)ht=ϕ(Whhht−1+Whxxt−1+bh)输出:ot=ϕ(Whoht+bo)o_{t}=\phi(W_{ho}
2022-05-01 14:57:25 1194
原创 【动手学习深度学习】循环神经网络-3.语言模型
文章目录3.语言模型3.语言模型给定文本序列x1,...,xTx_1,...,x_Tx1,...,xT,语言模型的目标是估计联合概率p(x1,...,xT)p(x_1,...,x_T)p(x1,...,xT)他的应用包括做预训练模型(eg BERT, GPT-3)生成文本,给定前面几个词,不断的使用xt∼p(xt∣xt−1,...,x1)x_t \sim p(x_t|x_{t-1},...,x_1)xt∼p(xt∣xt−1,...,x1)来生成后续文本判断多个序列中哪个更为常
2022-04-28 20:22:23 1069
原创 【动手学习深度学习v2】循环神经网络-2.文本预处理
文章目录2.文本预处理2.1 读取数据集2.2 词元化2.文本预处理序列数据的多种形式中,文本数据是最常见的一种,在英文文本中一篇文章或者一段句子可以看做一串单词序列,每个单词在文章中出现的先后次序可以看做文本的时序信息,因此一篇文章可以看做时序序列。文本预处理的核心就是将单词映射为能够被神经网络认识的数字样本。读取数据集:将文本作为字符串加载到内存中词元化:将字符串拆分为词元建立词表:建立一个词表,将拆分的词元映射到数字索引,然后将文本转换为数字索引序列,方便模型操作。# 运行工具:col
2022-04-25 10:20:29 1929 1
原创 【动手学深度学习v2】循环神经网络-1.序列模型
文章目录1.序列模型1.1 统计工具1.2 自回归模型1.3 总结1.序列模型与CNN提取空间信息不同的是,序列模型处理的是时间信息。1.1 统计工具下图为股票价格(近30年的富时100指数)假设在时间t观察到价格xtx_txt,那么得到T个不独立的随机变量,(x1,...,xT)−p(X)(x_1,...,x_T) - p(X)(x1,...,xT)−p(X)联合概率可以用条件概率展开p(a,b)=p(a)p(b∣a)=p(b)p(a∣b)p(a,b)=p(a)p(b|a)=p(
2022-04-22 22:59:56 1403
原创 pytorch语义分割-全卷积网络
文章目录1.语义分割和实例分割2.语义分割的数据集处理3. 转置卷积4.全卷积神经网络(FCN)1.语义分割和实例分割2.语义分割的数据集处理最重要的语义分割数据集之一是Pascal VOC2012%matplotlib inlineimport osimport torchimport torchvisionfrom d2l import torch as d2l#@saved2l.DATA_HUB['voc2012'] = (d2l.DATA_URL + 'VOCtrainval
2022-04-21 19:26:23 4126
原创 R-CNN,SSD,YOLO算法简单对比
文章目录1.R-CNN1.1 R-CNN1.2 Fast R-CNN1.3 Faster R-CNN1.4 Mask R-CNN2.SSD3.YOLO1.R-CNN1.1 R-CNN使用传统的锚框(提议区域)选择算法–[选择性搜索算法] (https://blog.csdn.net/weixin_43694096/article/details/121610856) 选取高质量锚框。对每一个锚框使用预训练模型对其提取特征,每个锚框需要调整为预训练模型所需要的输入尺寸。使用支持向量机(SVM)对
2022-04-20 22:27:06 5900
原创 pytorch使用GPU
查看GPU状态!nvidia-smi一个GPU一共16130M显存,0号GPU已使用3446M显存,一般GPU的利用率低于50%,往往这个模型可能有问题。本机CUDA版本,在安装驱动时应该注意选择对应版本的驱动。指定GPUimport torchfrom torch import nntorch.device('gpu'), torch.cuda.device('cuda'), torch.cuda.device('cuda:1')指定计算设备为GPU,使用多个GPU,本代码指定了
2022-04-15 16:47:31 16234 5
原创 tensorflow2.0手势识别出错记录
1. TypeError: len is not well defined for symbolic Tensors. (packed_2:0) Please call x.shape rather than len(x) for shape information.意思是tensor张量不能使用len()这个函数,可以把len(x_test)改为x_test.shape[0]同样可以得到测试集的长度。2.ValueError: When using data tensors as input to a
2021-03-12 16:06:42 1287
原创 jupyter notebook外网远程登录--花生壳内网端口映射
1. 安装以及配置jupyter安装jupyter:https://www.baidu.com/s?wd=ubuntu%20%E5%AE%89%E8%A3%85jupyter%20notebookjupyter远程访问:https://blog.csdn.net/weixin_41122036/article/details/1027839452.安装花生壳Linux版下载https://www.oray.com/后打开所在文件夹,在此文件夹内打开终端输入sudo -s打开管理员模式安装:d
2021-03-06 20:20:06 840 6
原创 使用anaconda3安装tensorflow2.0
1.下载anaconda先下载最新版anaconda2.安装anacondahttps://zhuanlan.zhihu.com/p/757173503.安装tensorflow环境关闭 anaconda和pycharm,打开anaconda prompt新建一个python3.5的环境conda create --name tensorflow python=3.5激活进入这个python3.5的环境activate tensorflow升级pippip install
2021-02-21 20:35:14 645
原创 用C语言描述银行家算法,安全性算法的过程
算法简介银行家算法是一种最有代表性的避免死锁的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为了实现银行家算法,在系统中必须设置这样四个数据结构,分别用来描述系统中可利用的资源、所有进程对资源的最大需求、系统中的资源分配,以及所有进程还需要多少资源的情况。1.数据结构(1) 可利用资源向量 Available。这是一个含有 m 个元素的数组,其中的每一个元素代表一类可利用的资源数目,其初始值是系
2020-07-05 21:30:54 1775
原创 汇编画脉冲波形图
以十进制数形式从键盘输入脉冲高度、脉冲宽度和颜色参数后,以屏幕中间行为脉冲中间行,从左到右、满屏画出相应的脉冲波图形。DATAS SEGMENT ;此处输入数据段代码 Prompt_Str1 db 'Please input hight: $' ;提示输入脉冲高度 Prompt_Str2 db 'Please input width: $' ;提示输入脉冲宽度 Prompt_Str3 db 'Please input line colour: $' ;提示输入波线颜色 Hig
2020-06-26 11:43:27 3328
原创 汇编小作业(3) 十进制数的平方根
用子程序结构编程:从键盘输入一个十进制数,对其开平方后分别将其平方根和余数以十进制数的形式显示。DATA SEGMENT SUM DW 2 DUP(?) BUF DB 7 DUP(?) DATA ENDS stack segment ;定义栈段,保存div的余数 dw 40 dup (?...
2020-04-21 10:08:24 753
原创 matalb小波去噪软阈值和硬阈值
clear all,clc,close all;image = rgb2gray(imread('Lenna.jpg'));noiseI=imnoise(image,'gaussian',0,0.02);subplot(231),imshow(image),title('原图像');subplot(232),imshow(noiseI),title('高斯白噪声图像');% 对图像noi...
2020-04-10 17:56:34 8936 5
原创 matlab绘制五种常见的小波函数的时域及频域波形
clc,close all,clear all;% 第一种:haar小波函数% 返回2^ITFR点上的尺度变换函数(phi)和小波函数(psi).其中ITFR是指迭代次数[phi,gll,xval]=wavefun('haar',20);figuresubplot(211)plot(xval,gll,'r');title('haar小波函数时域波形')xlabel('时间t')g...
2020-04-10 17:39:48 18580 15
原创 汇编小作业(2):统计字符串中数字个数
编程:从键盘输入一串以‘$‘为结束符的字符串,然后对其中的数字字符计数,并以十六进制数的形式显示出计数结果。DATAS SEGMENT co DW ? DATAS ENDSSTACKS SEGMENT STACKS ENDSCODES SEGMENT ASSUME CS:CODES,DS:DATAS,SS:STACKSSTART: MOV AX,DATAS...
2020-04-09 16:44:11 4538
原创 汇编小作业(1):大小写字母转换
编程:从键盘输入一串以‘回车符‘为结束符的字符串。每输入一个大写字母,则将其转换为小写字母显示;每输入一个小写字母,则将其转换为大写字母显示。DATAS SEGMENT INPUT DB 'please input letters:','$' DATAS ENDSSTACKS SEGMENTSTACKS ENDSCODES SEGMENT ASSUME CS:CODE...
2020-04-07 18:15:18 2167 2
原创 matlab编程实现数字图像单层子带分解重构算法与两层子带分解重构算法
close all,clear all;clc;Image = imread('image.jpg');figure(1)subplot(1,3,1),imshow(Image);title('原始图像');grayI = rgb2gray(Image);% 对图像采用单层离散二维小波变换,小波为四阶db4小波(Daubechies4)% 计算通过对输入矩阵grayI进行小波分解得...
2020-04-01 10:40:19 947
原创 用matlab编程实现数字图像理想低通滤波、高斯低通滤波和巴特沃斯低通滤波去噪算法
1 理想低通滤波%理想低通I = imread('fig.png');I=rgb2gray(I);figure(1);subplot(221),imshow(I);title('原图像');I=imnoise(I,'gaussian');%%加入高斯白噪声subplot(222),imshow(I);title('加入噪声后的图像');s=fftshift(fft2(I));...
2020-03-30 21:33:11 26842 13
原创 用matlab编程实现对图像的均值滤波,中值滤波和拉普拉斯算子锐化
1 均值滤波均值滤波:用包含在滤波掩模邻域内的像素的平均灰度值去代替每个像素点的值。用途:用于模糊处理和减少噪声。盒滤波器:加权平均滤波器% 均值滤波clc;close all;clear all;I = rgb2gray(imread('fig.png'));F = imnoise(I,'gaussian',0, 0.02); % 加入高斯噪声% F = imnoise...
2020-03-30 21:19:43 12354
原创 PyQt5解决ImportError: DLL load failed: 找不到指定的程序。
遇到这个问题是当我删除原来的pyqt5包,换上新版本的pyqt5时报的错误。因为这个问题所有方法都试了,包括sip,tool的兼容等问题,但是最终还是通过创建新的python环境解决了在新环境安装PyQt5pip install PyQt5 -i https://pypi.douban.com/simplepip install PyQt5-tools -i https://pypi.d...
2020-02-23 11:31:19 4150 1
原创 tkinter之窗口控件配置和按钮Button的使用
文章目录3.窗口控件配置3.1 Widget Layout Manager - pack方法3.2 Widget Layout Manager - grid方法3.3 Widget Layout Manager - place方法4.按钮Button3.窗口控件配置3.1 Widget Layout Manager - pack方法pack是最常使用的控件配置管理方法,它是使用相对位置的概念...
2020-01-13 16:53:04 3003
原创 tkinter的容器控件Frame
文章目录1.框架Frame1.1 基本用法1.2 在Frame框架内创建Widget控件2.标签框架LabelFrame2.1 基本用法3 顶层窗口ToPlevel3.1 基本用法1.框架Frame1.1 基本用法当设计复杂的GUI界面时,采用框架将相关的Widget组织在一个框架内,可以方便管理。语法:Frame(父对象, options, ...) # 父对象可以省略Frame...
2020-01-13 16:51:08 1789
原创 tkinter之Message与Messagebox
1. Message语法:Message(父对象, options, …)Message( )方法的第一个参数是父对象,表示这个标签将建立在哪一个父对象内。下列是Message( )方法内其他常用的options参数。(1)anchor:如果空间大于所需时,控制消息的位置,默认是CENTER。(2)aspect:控件宽度与高度比,默认是150%。(3)bg或background:背景色...
2020-01-13 16:49:54 4524
原创 tkinter之文本框Entry,Radiobutton选项按钮和Checkbutton复选框
5.文本框Entry5.1 基本用法所谓的文本框Entry,通常是指单行的文本框,在GUI程序设计中这是用于输入的最基本Widget控件,我们可以使用它输入单行字符串,如果所输入的字符串长度大于文本框的宽度,所输入的文字会自动隐藏造成部分内容无法显示。碰到这种状况时,可以使用箭头键移动鼠标光标到看不到的区域。需留意的是文本框Entry限定是单行文字,如果想要处理多行文字需使用Widget控件中...
2020-01-13 16:48:58 1591
原创 tkinter基本概念和标签Label的使用
1.认识tinkter1.1 tinkter版本import tkinterprint(tkinter.TkVersion)1.2 建立窗口# 自定义Tk对象tk = Tk() root.mainloop()1.3 窗口相关方法例如:from tkinter import *tk = Tk()tk.title(" ") # 窗口标题tk.geometry(...
2020-01-13 16:47:46 2112
原创 tkinter之事件和绑定
文章目录1.Widget的command参数2.事件绑定3. 取消绑定4.Protocols5. 一个事件绑定多个事件处理程序1.Widget的command参数功能按钮(Button)、数值滚动条(Scale)等。其实这就是一个Widget的事件绑定的概念,当按钮事件发生、当数值滚动条值改变……就可以通过command=callback,设计callback函数,这个callback函数就是...
2020-01-13 12:47:16 2188
原创 matlab普通仿真2(笔记)
〔实例 2.1〕试仿真得出一个幅度调制系统的输入输出波形。设输入被调制信号是一个幅度为 2v,频率为 1000Hz 的馀弦波,调制度为 0.5,调制载波信号是一个幅度为 5v,频率为 10KHz 的馀弦波。所有馀弦波的初相位为 0。% ch2example1prg1.mdt=1e-5; % 仿真采样间隔T=3*1e-3; % 仿真终止时间t=0:dt:T;input=2*cos...
2020-01-12 18:49:48 840 2
原创 matlab基本通信模块的建模(笔记)
求滤波器的最小阶和3dB截止频率Matlab 中提供了 butter,cheb1ord,cheb2ord,ellipord 四个函数来分别设计巴特沃斯型、切比雪夫 1、2 型滤波器以及椭圆型模拟滤波器或数字滤波器。它们的调用格式相同,如下:[n,Wn] = buttord(Wp,Ws,Rp,Rs) % 巴特沃斯型数字滤波器[n,fn] = buttord(fp,fs,Rp,Rs,’s’) %...
2020-01-12 18:45:01 2492
原创 通信原理期末复习笔记 -- 第五章 模拟调制系统
文章目录模拟调制系统1. 幅度调制原理1.1 AM调制1.2 双边带调制(DSB)1.3 单边带调制(SSB)1.4 残留边带调制1.5 相干解调与包络检波2 线性调制的抗噪声性能2.1 分析模型2.2 DSB调制系统的性能2.3 SSB调制系统的性能2.4 AM包络检波的性能3 非线性调制(角度调制)原理3.1 角度调制的基本概念3.1.1 FM和PM信号的一般表达式3.1.2 单音调制FM与P...
2020-01-12 18:16:24 10921 2
原创 通信原理笔记 -- 第四章 信道
目录文章目录目录信道1 无线信道2 有线信道3 信道的数学模型3.1 调制信道模型3.2 信道特性对信号传输的影响3.3 信道噪声3.4 信道容量课后问题信道1 无线信道根据通信距离、频率和位置的不同,电磁波的传播主要分为地波(ground wave)、天波(sky wave)(或称电离层反射波(ionosphere reflection wave))和视线(line of sight)...
2020-01-12 18:09:53 5678
原创 通信原理笔记--绪论
目录文章目录目录1.通信的基本概念1.1 通信系统模型1.1.1 模拟通信系统模型1.1.2 数字通信系统模型1.1.3 数字通信的优缺点2. 信息及度量2.1 离散消息的信息量2.1.1 等概率度量2.1.2 非等概率度量3. 通信系统的主要性能指标3.1 有效性3.1.1 频带利用率3.2 可靠性课后习题1.通信的基本概念1.1 通信系统模型1.1.1 模拟通信系统模型信源发送设备信...
2020-01-12 18:05:04 3811
转载 matlab三个简单物理建模实例(笔记)
〔实例 1.1〕试对空气中在重力作用下不同质量物体的下落过程进行建模和仿真。已知重力加速度 g = 9.8m/s 2 ,在初始时刻 t 0 = 0s 时物体由静止开始坠落。空气对落体的影响可以忽略不计。g=9.8; % 重力加速度v=0; % 设定初始速度条件s=0; % 设定初始位移条件t=0; % 设定起始时间dt=0.1; % 设置计算步长N=20; % ...
2019-12-05 10:36:27 19257 1
Masm for Windows 集成实验环境.zip
2020-04-07
PyQt5-5.14.1-5.14.0-cp35.cp36.cp37.cp38-none-win32.whl
2020-01-23
PyQt5-5.14.1-5.14.0-cp35.cp36.cp37.cp38-none-win_amd64.whl
2020-01-23
VHDL数字时钟.7z
2019-07-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人