java漏斗代码_集算示例:10 行代码解决漏斗转换计算

销售过程是一个多环节的过程,哪个步骤有了过大瑕疵,都会导致业绩急剧下滑。而诊断出哪个步骤有瑕疵,除了无形的经验,还有量化的诊断方式,就是今天要讨论的主角:转化漏斗模型。

示例数据

为了详细讨论这个漏斗的实现过程,我们举一个具体的网上商城的例子,被分析的数据也不复杂,只有一个事件表:

用户 ID:用户编码

事件 ID:事件编码

事件属性:不同事件有不同属性;json 格式,{“content”:”computer”,”page_num”:1}

时间:事件发生的时间

事件类型和事件属性如下所示

65b3e9254ded60dfcb3ccc08862d3976.png

需求定义

目标结果是获得某个操作流程在每个操作的客户流失率,如下图,登录的用户有 20000 人;其中有 12000 人进行了:登录 -> 搜索商品;其中有 8000 人进行了:登录 -> 搜索商品 -> 查看商品。如下图所示:

e958e4293eeddc88ba552c68127696f9.png

每个事件后都可能流失一些用户,整个图示就象一个漏斗形状,所以被称为漏斗转换分析。

我们来研究这个运算的一些需求点:

针对同一个用户,我们观察下面这两组数据,因为事件顺序关系,我们认为 1000001 用户只发生了登录行为,而 1000002 的三个事件符合目标顺序,到查看商品事件才流失

用户 ID

事件 ID

事件名称

时间

1000001

10002

登录

2017/2/3 0:01

1000001

10004

浏览产品

2017/2/3 0:03

1000001

10003

搜索产品

2017/2/3 0:08

1000001

10007

生成订单

2017/2/3 0:12

用户 ID

事件 ID

事件名称

时间

1000002

10002

登录

2017/2/3 0:01

1000002

10003

搜索产品

2017/2/3 0:03

1000002

10004

浏览产品

2017/2/3 0:08

上面这些事件,有一些事件有必然的前后关系,比如退订商品肯定发生在订单付款之后,订单付款肯定发生在生成订单之后;而收藏商品和加入购物车就不一定谁先谁后了,退订商品前也不一定发生评价商品的事件。这些不稳定性背后隐藏着用户行为,通过对一组有序事件的漏斗分析,就找到了这组行为用户在各个阶段的流失率。这是第一个需求点:事件要顺序发生,且能灵活定义。

第二个需求点是能对事件属性自由定义条件,如 brand=’APPLE’&#

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值