自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学-> 思->用

专注人工智能算法开发

  • 博客(796)
  • 资源 (138)
  • 收藏
  • 关注

原创 解决Ubuntu系统/usr/lib/xorg/Xorg占用显卡内存问题原创

通过更新显卡驱动、调整Xorg配置、使用轻量级桌面环境、禁用不必要的图形特效、以及在可能的情况下使用命令行界面,你可以有效减少或解决进程对显卡内存的占用问题。这些方法可以帮助你优化系统性能,特别是在需要大量GPU资源的计算任务中。

2024-06-07 11:22:35 598

原创 解决nvidia驱动和CUDA升级问题

modprobe -r nvidia-drm # unload 显卡驱动。$ sudo sh ./NVIDIA-Linux-x86_64-390.48.run # 执行升级脚本。应该是你的桌面显示器在使用显卡驱动 关闭即可。就可以升级显卡驱动和CUDA啦。

2024-06-07 10:20:22 546

原创 糖尿病相关的数据集

Pima Indians Diabetes 数据集是最常用的糖尿病数据集之一。Kaggle是一个数据科学竞赛平台,上面有许多开源的数据集。以下是一个完整的示例,使用Pima Indians Diabetes数据集构建和评估糖尿病检测模型。这个数据集可以从UCI机器学习库下载,然后在R中加载。通过这些步骤,你可以加载不同的糖尿病数据集,并使用R语言构建和评估糖尿病检测模型。该数据集包含了超过70,000条记录,记录了患者的健康指标和糖尿病情况。首先需要从Kaggle下载数据集,然后在R中加载。

2024-06-06 08:45:00 303

原创 歌声合成相关的数据集

MSD是一个包含100万首歌的元数据和音频特征的数据集。GTZAN数据集是一个非常流行的音乐数据集,包含10个音乐流派,每个流派有100首30秒的音频片段。Jamendo数据集包含来自Jamendo平台的音乐片段,用于音乐信息检索和推荐系统研究。VoxCeleb是一个包含大量名人语音和歌声的数据集,适用于语音识别和歌声识别任务。通过这些数据集和工具,你可以开展歌声识别、音乐分类、音乐生成等多种研究和应用。FMA数据集是一个开源的音乐数据集,包含各种流派的音频文件和元数据。

2024-06-05 10:49:18 253

原创 基于R语言的糖尿病检测模型准确率97%

通过上述步骤,我们使用R语言构建了一个糖尿病检测模型,并使用Pima Indians Diabetes数据集进行了训练和评估。逻辑回归模型在测试集上的表现可以通过混淆矩阵和准确率来衡量。

2024-06-05 10:25:16 550

原创 异常检测常见方法综述

异常检测(Anomaly Detection)是指识别数据集中异常模式或行为的过程。异常点(Anomalies),也称为离群点(Outliers),是指那些显著不同于正常数据的少数数据点。点异常:单个数据点与其他数据显著不同。上下文异常:数据点在特定上下文中表现异常。集体异常:一组数据点共同表现异常。

2024-06-05 10:10:43 36

原创 深度学习在老年痴呆检测中的应用:数据集综述

老年痴呆(Alzheimer’s Disease, AD)是一种神经退行性疾病,主要影响老年人,导致记忆力、认知能力和行为的逐步衰退。近年来,深度学习技术在医学影像分析和疾病预测方面展现了巨大的潜力。本文将综述用于老年痴呆检测的常用数据集及其特点,并探讨深度学习在该领域的应用。通过利用丰富的多模态数据集,研究人员能够开发出更为精准和鲁棒的模型,帮助早期检测和干预。未来的研究应进一步探索多模态数据的融合方法,并开发能够解释模型决策的可解释性深度学习模型,以提高临床应用的信任度和可行性。

2024-06-04 13:37:10 284

原创 深度解析ChatGPT原理

自然语言处理(NLP)是人工智能的一个分支,旨在让计算机理解、生成和处理人类语言。NLP技术广泛应用于机器翻译、情感分析、文本分类等领域。本文详细解析了ChatGPT的技术原理,包括其架构、训练过程、生成机制和应用场景。通过图文并茂的解释,帮助读者深入理解ChatGPT的工作原理及其在自然语言处理领域的应用。

2024-06-04 12:00:00 850

原创 方法调研:DDOS检测有哪些方法?

检测DDoS攻击的方法多种多样,主要可以归纳为以下几类:流量分析、行为分析、协议分析、分布式检测和基于机器学习的方法。每种方法都有其独特的优势和适用场景。

2024-06-03 15:15:20 158

原创 检测DDoS攻击的原理

DDoS攻击是网络安全中的重大威胁,检测是防御DDoS攻击的关键步骤。通过流量分析、行为分析、协议分析和分布式检测等方法,可以有效识别和应对DDoS攻击。结合实际应用中的工具和系统,企业和组织可以构建强大的DDoS检测和防护体系,保障网络和服务的稳定性和安全性。DDoS攻击通常由多个分布式的攻击源发起,分布式检测通过在多个网络节点部署检测系统,协同识别DDoS攻击。通过监控网络流量,识别异常的流量模式是检测DDoS攻击的基本方法。行为分析通过识别流量行为的异常变化来检测DDoS攻击。

2024-06-03 15:12:13 440

原创 基于深度学习的音乐合成算法实例

基于深度学习的音乐合成算法可以生成高质量的音乐片段。以下是一个简化的基于深度学习的音乐合成算法实例,使用了LSTM网络来生成音乐序列。这个示例展示了如何使用LSTM网络来训练和生成音乐。

2024-06-02 11:45:10 186

原创 歌声合成算法流程和基于lstm的算法实例

歌声合成(Singing Voice Synthesis, SVS)是一项复杂的任务,旨在生成具有自然音质和情感的歌声。实现这种效果的算法通常涉及多个步骤,包括音高预测、音素时长预测、声学特征生成和波形生成等。基于LSTM(Long Short-Term Memory)网络的歌声合成算法是其中一种常见的方法。

2024-06-02 11:42:35 597

原创 python的scapy解读pcap包

运行后,脚本将输出每个数据包的摘要信息以及相关的 IP 和端口信息。这个示例仅展示了如何读取和解读 pcap 文件的基本信息,你可以根据需要进一步扩展和定制解读逻辑。是一个非常强大的网络数据包处理库,可以用来捕获、解读和生成网络数据包。然后,创建一个 Python 文件(例如。好的,下面是一个使用 Python 和。库来解读 pcap 文件的示例代码。首先,确保你已经安装了。

2024-06-01 18:56:01 183

原创 fastAPI的实例

好的,下面是一个简单的 FastAPI 示例,展示了如何创建一个基本的 API 应用程序。这个示例将包括一个简单的 GET 和 POST 请求。或 Postman)来测试这些 API 端点。然后,创建一个 Python 文件(例如。这个命令将发送一个 POST 请求到。然后,你可以在浏览器中访问。端点,并返回你发送的数据。

2024-06-01 18:54:09 126

原创 Linux-桌面操作系统在服务器上未关闭休眠机制,使其开机半小时左右死机无法远程ssh连接

异常原因:由ubuntu desktop操作系统自动休眠机制导致的不能唤醒操作系统异常。解决方案:禁用ubuntu desktop操作系统自动休眠机制。操作步骤:检查休眠功能的状态以及历史记录普通桌面应用这个这个功能情况问题不大,但作为服务器使用这个功能,远程访问系统时这个功能就会导致无法远程控制服务器,故需关闭这个功能。2、执行关闭休眠功能的命令,如下:3、再次查看系统休眠状态自动休眠功能已关闭,就不会再出现自动休眠导致远程控制无法访问的情况。

2024-05-31 09:21:38 59

原创 pytorch 指定GPU的几种方法

在使用PyTorch时,你可以通过多种方式指定和使用GPU。

2024-05-31 09:21:05 152

原创 ubuntu 20.04上docker 使用gpu

要在Docker容器中使用GPU,你需要确保系统上已经安装了正确的NVIDIA驱动程序,并且安装了NVIDIA Container Toolkit。

2024-05-30 14:15:47 479

原创 英伟达驱动重装教程

离线安装NVIDIA驱动程序通常涉及下载驱动程序安装包并手动执行安装步骤。

2024-05-30 14:08:51 352

原创 安全大模型以及训练数据集

安全大模型和数据集

2024-05-21 16:24:42 44

原创 强化学习与网络安全资源

【代码】强化学习与网络安全资源。

2024-05-21 16:23:52 128

原创 命令行配置网络

【代码】命令行配置网络。

2024-05-21 16:23:16 32

原创 命令行配置网络

【代码】命令行配置网络。

2024-05-21 16:21:47 26

原创 强化学习与网络安全资源-论文和环境

【代码】强化学习与网络安全资源-论文和环境。

2024-05-14 14:56:49 50

原创 关于大语言模型的论文和学习资源集合

【代码】关于大语言模型的论文和学习资源集合。

2024-05-14 14:40:29 161

原创 14种异常检测方法总结

基于正态分布,3sigma准则认为超过3sigma的数据为异常点。图1: 3sigma2. Z-scoreZ-score为标准分数,测量数据点和平均值的距离,若A与平均值相差2个标准差,Z-score为2。当把Z-score=3作为阈值去剔除异常点时,便相当于3sigma。3. boxplot箱线图时基于四分位距(IQR)找异常点的。4. Grubbs假设检验资料来源:Grubbs’Test为一种假设检验的方法,常被用来检验服从正态分布的单变量数据集(univariate da

2024-05-11 14:58:41 18

原创 chatGLM或chatgpt:什么是tokens以及如何计算tokens长度?

简单的来说tokens就是大语言模型输入的向量数据,它是从原始的文本转化而来。比如输入:here is a text demotokens为:[64790, 64792, 985, 323, 260, 2254, 16948]解码:将tokens转化为文本。

2024-05-11 14:46:07 323

原创 自然语言处理-文本清理技术

文本清理,也称为文本预处理或文本数据清理,正在准备原始文本数据并将其转换为更干净、更结构化的格式,以用于分析、建模或其他自然语言处理 (NLP) 任务。它涉及各种技术和程序,从文本文档中去除噪声、不一致和不相关信息,使数据更适合文本分析、情感分析、文本分类和机器学习等下游任务。

2024-05-09 23:10:26 209

原创 神经网络训练失败的原因总结

如果只是validate set上不收敛那就说明overfitting了,这时候就要考虑各种anti-overfit的trick了,比如dropout,SGD,增大minibatch的数量,减少fc层的节点数量,momentum,finetune等。对数据扩增也能够实现正则化的效果,最好的避免过拟合的方法就是有大量的训练数据。在自己训练新网络时,可以从0.1开始尝试,如果loss不下降的意思,那就降低,除以10,用0.01尝试,一般来说0.01会收敛,不行的话就用0.001. 学习率设置过大,很容易震荡。

2024-05-09 23:03:51 405

原创 Google Gemma 2B 微调实战(IT科技新闻标题生成)

如果你不想训练,但又希望尝试本文中的模型,你可以在 huggingface 上搜索 gemma-2b-technology-news-title-generation-lora[9],找到从100-2200 steps 的所有 checkpoint。本文使用了一种相对简单的方式来训练符合自己需求的模型。在真实的企业场景中往往还涉及如何生成符合需求的数据集,集群训练,模型的AB测试,企业级部署等问题。我会在未来的文章中和大家分享。

2024-05-08 23:10:09 383

原创 Python实现3D建模工具(下)

感观上是这样,但其实这种说法不准确,真实情况是在世界坐标系里摄像机是在原点的,但在摄像机坐标系中,摄像机后退了15个单位,这就等价于前者说的那种情况了。我们使用轨迹球算法来完成场景的旋转,旋转的方法理解起来很简单,想象一个可以向任意角度围绕球心旋转的地球仪,你的视线是不变的,但是通过你的手在拨这个球,你可以想看哪里拨哪里。检测包围盒也有其缺点,如下图所示,我们希望能点中球背后的立方体,然而却选中了立方体前的球体,因为我们的激光射中了球体的包围盒。类内的代码,实现了模块与模块之间的低耦合。

2024-05-08 09:23:08 890

原创 Python实现3D建模工具(上)

人类是那么得有创造力,我们创造、发明、设计、生产了一切大自然没有直接给予我们的东西使我们的生活变得更轻松更美好。在过去,我们只能在图纸上进行产品的创造与设计,而现在,有了计算机的帮助,有了CAD(计算机辅助设计)软件,大大节省了我们的精力与时间成本,使我们的工作更高效,能够拥有更多时间去思考设计本身。那么CAD软件是如何写出来的呢?CAD软件种类繁多,但它们有一个共同的特点,就是对三维世界的建模,对三维世界中物体的控制,对三维设计的展示。这,就是本课程要实现的内容了。

2024-05-07 10:36:25 884

原创 Python暴力猜解Web应用

本实验使用Python实现暴力猜解wordpress管理员登录表单的功能,并使用多线程、破解队列来优化破解过程。在实际应用中常常结合弱口令和用户个人信息组成的口令集合来进行猜解,一般会取得不错的结果。口令集合的选取很重要,可以说完全决定了破解的成败。但无论什么样的口令集合,最终的破解过程都是相同的。学有余力的同学可以尝试使用弱口令字典破解其他系统的默认账号密码(可百度弱口令字典初探Python3的异步IO编程。

2024-05-07 00:29:13 17

原创 [python基础]--050-- python三行代码实现换底色和背景

得到一张透明背景的图片,复制到PPT中,双击图片--开始--形状填充--选择背景颜色,蓝底红底任你选择,最后右键保存即可!使用上面的代码,加载一张正脸照片,下面是本文使用的测试图,图片来源于网络,如有侵权请联系删除。得到一张透明背景的图片,复制到PPT中,再加一张背景图置于底部,移动刚刚生成的图像即可,最后截图保存。开源库rembg,让你轻松实现去除图片背景的效果。可以手动下载模型,放到:C:\Users\你的用户名\.u2ne文件夹下。应用二:更改目标背景。

2024-05-06 14:41:40 118 2

原创 Python实现简单的Web服务器

互联网在过去20年里已经大大地改变了我们的生活方式,影响着社会。但是反观互联网,它的基础-web的核心原理并没有改变多少。大部分web系统仍旧遵守 Tim Berners-Lee 20 多年前提出的 W3C 标准,大部分web服务器接收的信息格式与接收的方式与过去并无二致。

2024-05-06 10:32:49 1528

原创 Cuckoo沙箱环境

监控系统调用,网络流量,文件操作并结合反调试和反虚拟化技术,以防止恶意软件逃逸(例如,恶意软件可能会尝试检测是否在虚拟机环境中运行,以避免被分析)。收集样本在运行过程中创建或者下载的文件,可能包含恶意代码、配置文件、日志文件等,可以分为写入磁盘和存储在内存中的缓冲区中的两者。自动下载相关的恶意文件或链接,然后在虚拟环境中运行并收集有关其行为的信息,最终生成有关该恶意文件的报告。注册表键值:恶意软件可能会修改或创建注册表键值,因此从提取的工件中可以获取到关于该恶意软件的更多信息。

2024-04-28 15:52:25 53

原创 读书笔记《高效能人士的七个习惯》

信息更新迭代的迅速,团队的合作显得尤为重要。谁 也无法说服他人改变 ,因为我们每个人都守着一扇只能从内 开启的改变之门 ,不论动 以情或晓之以理 , 我们都不能替别人开门。1)效能是什么?效能是产出和产能的平衡。人不能过渡的重视产出,从而忽略的人生的意义以及学习的意义。即除了工作以外我们还有个人成长和学习。暂时无法在飞书文档外展示此内容依赖期——以‘你’为核心,你照顾我;你得为我的得失成败负责。独立期——以‘我’为核心,我可以做到;我可以负责;我可以靠自己;我有权选择。

2024-04-22 15:27:09 296

原创 读书笔记《丰田人才精益模式》

丰田的人事模型提醒我们,精益并非只是更有效地制造产品的一种技术制度,在精益生产的制度中,评估产品的价值流,以辨识、避免浪费。丰田的工作知道培训方法:工作分解,分析工作的内容的决定哪些是关键的步骤以及工作的各个层面该如何进行。通过读这本书对我的触动还是很大的。人才是最重要的资源:企业的核心资产是人才,人才是企业的第一命脉。特备是在经济下行的情况下,如何在经济下行的情况,增加对企业的创新的投入。通过对本书的阅读,增加了对人才培养的深刻认识,希望在未来的团队协作以及团队历练中能多多应用丰田的培养体系和方法。

2024-04-22 15:25:22 358

原创 读书笔记《项目管理精要》

识别干系人:识别出跟项目相关的干系人是一个困难的任务,干系人分析就是系统的收集信息。3》完成干系人评估表。特别对于IT的开发项目,经常遇到需求变更以及需求变化,在此情况下如何管理项目是一个关键的问题,特别要注意的环节是执行过程和监控过程,需要定期测量和监控进展来识别项目计划中的偏差,从而采取必要的纠正措施。《项目管理精要》这本书内容详实的介绍了项目管理过程中的各个环节,未来在做项目的时候会对项目文档、项目规划、项目干系人进行充分的分析,对于软件开发类项目要特别的注意需求变化和项目监控,防止与期望偏差过大。

2024-04-22 15:23:57 330

原创 读书笔记《学习型管理》

学习型管理》内容简介:丰田式管理的精华,一张A3纸把问题的源头、分析、纠正和执行计划全面囊括。简单即是有效。很多熟悉A3报告的人最初都会把A3看成是一个简单的沟通工具,或者问题解决工具,但是A3的含义远不止如此。公司会通过A3流程来对问题、项目和建议进行识别、构架、行动和回顾,同时也可以通过这个模式来培养干部,训练他们找出问题的根源。这个学习型的模式正是公司建立企业文化的重要一步。《学习型管理》这本书为我提供了深入的思考和行动的指导。它强调了组织学习和个人学习对于组织发展的重要性。

2024-04-22 15:22:22 453

原创 读书笔记-《复盘+》

复盘是一种方法论,它的核心目的是从经验(工作)中学习,是结构化团队学*机制,是成人学*最重要的形式之一。通过读此书,以下几点对我触动比较大。1)复盘对于个人和团队很重要,启发了我对复盘的重新认识(复盘是在事前规划好,事中控制好,事后总结好,失败的事情要重点分析是什么原因),复盘的内容以及时间节点对我触动很大。2)复盘要充分准备:为了做好复盘,其实我们在项目开始之前就要花费足够多的时间去规划,去定目标。3)什么事可以复盘:对于新的事、重要的事、有价值的事和未达到预期的事,都可以进行复盘。

2024-04-22 15:20:29 615

中南大学-机器学习(大三上)-课程考试资料以及真题回忆.zip

中南大学-机器学习(大三上)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-软件体系结构(大三下)-课程考试资料以及真题回忆.zip

中南大学-软件体系结构(大三下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-python(大二下)-课程考试资料以及真题回忆.zip

中南大学-python(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-毛概(大三上)-课程考试资料以及真题回忆.zip

中南大学-毛概(大三上)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-模电(大二下)-课程考试资料以及真题回忆.zip

中南大学-模电(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

基于C++的快速傅里叶变换(FFT)与快速沃什变换(Walsh).zip

内含源码和设计文档,可直接运行

2024-06-18

基于BS模型-二叉树模型-傅里叶变换-蒙特卡洛模拟实现期权定价.zip

内含源码和设计文档,可直接运行

2024-06-18

CCS软件仿真实现卷积和快速傅里叶变换(FFT)加高斯白噪声.zip

内含源码和设计文档,可直接运行

2024-06-18

基于MATLAB对RS码编译码器设计仿真.zip

内含源码和设计文档,可直接运行

2024-06-18

esp32上用FFT库实现快速傅里叶变换显示声音频谱.zip

内含源码和设计文档,可直接运行

2024-06-18

基于simulink建立了电液伺服系统的模拟仿真.zip

内含源码和设计文档,可直接运行

2024-06-18

C语言实现傅里叶变换.zip

内含源码和设计文档,可直接运行

2024-06-18

基于傅里叶变换的数字盲水印.zip

内含源码和设计文档,可直接运行

2024-06-18

基于MATLAB对RS码编译码器进行设计仿真.zip

内含源码和设计文档,可直接运行

2024-06-18

基于傅里叶变换的图像自适应水印算法.zip

内含源码和设计文档,可直接运行

2024-06-18

基于STM32的迷你自平衡小车包含软件设计和硬件清单.zip

内含源码和设计文档,可直接运行

2024-06-18

快速傅里叶变换及其逆变换.zip

内含源码和设计文档,可直接运行

2024-06-18

基于光电控制系统做的双角度仿真控制.zip

基于光电控制系统做的双角度仿真控制内含源码和设计文档

2024-06-18

苏州大学-计算机学院-考研-初复试资料.zip

苏州大学-计算机学院-考研-初复试资料.zip

2024-06-12

上海交通大学—计算机系—考研-保研-上机-资料.zip

上海交通大学—计算机系—考研-保研-上机-资料.zip

2024-06-12

中南大学-操作系统(大二下)-课程考试资料以及真题回忆.zip

中南大学-操作系统(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-数字电路(大二下)-课程考试资料以及真题回忆.zip

中南大学-数字电路(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-计网(大二下)-课程考试资料以及真题回忆.zip

中南大学-计网(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-分布式与云计算(大三下)-课程考试资料以及真题回忆.zip

中南大学-分布式与云计算(大三下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-嵌入式(大三下)-课程考试资料以及真题回忆.zip

中南大学-嵌入式(大三下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-算法(大二下)-课程考试资料以及真题回忆.zip

中南大学-算法(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-数据库(大二下)-课程考试资料以及真题回忆.zip

中南大学-数据库(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-计算机体系结构(大三上)-课程考试资料以及真题回忆.zip

中南大学-计算机体系结构(大三上)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-参考-期末复习计(optional)-课程考试资料以及真题回忆.zip

中南大学-参考-期末复习计(optional)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-人机交互(大三上)-课程考试资料以及真题回忆.zip

中南大学-人机交互(大三上)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-编程期末复习(并行计算+linux)-课程考试资料以及真题回忆.zip

中南大学-编程期末复习(并行计算+linux)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-体系结构(大三上)-课程考试资料以及真题回忆.zip

中南大学-体系结构(大三上)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-Linux(大二下)-课程考试资料以及真题回忆.zip

中南大学-Linux(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-人工智能(大二下)-课程考试资料以及真题回忆.zip

中南大学-人工智能(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-软件工程(大三上)-课程考试资料以及真题回忆.zip

中南大学-软件工程(大三上)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-网络安全(大三下)-课程考试资料以及真题回忆.zip

中南大学-网络安全(大三下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-web技术(大三上)-课程考试资料以及真题回忆.zip

中南大学-web技术(大三上)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-并行计算(大三下)-课程考试资料以及真题回忆.zip

中南大学-并行计算(大三下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-数据仓库与数据挖掘(大三下)-课程考试资料以及真题回忆.zip

中南大学-数据仓库与数据挖掘(大三下)-课程考试资料以及真题回忆.zip

2024-06-18

中南大学-数据结构(大二下)-课程考试资料以及真题回忆.zip

中南大学-数据结构(大二下)-课程考试资料以及真题回忆.zip

2024-06-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除