- 博客(659)
- 资源 (138)
- 收藏
- 关注
原创 [算法前沿]--018-中文大模型ChatGLM微调:P-Tuning,deepspeed,LoRA<下>
你也可以直接运行支持加载 P-Tuning v2 checkpoint 的。改为 JSON 文件中输入文本和输出文本对应的 KEY。改成本地的模型路径(注意不是checkpoint路径)。的内容以符合你实际的 checkpoint 情况。),将自动把聊天历史拼接。为你自己的 JSON 格式数据集路径,并将。来匹配你自己的数据集中的最大输入输出长度。为数据中聊天历史的 key(在此例子中是。改成你训练时的实际值。
2023-05-26 10:00:17
632
原创 [算法前沿]--017-中文大模型ChatGLM微调:P-Tuning,deepspeed,LoRA<中>
ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。
2023-05-26 09:59:01
332
原创 [算法前沿]--016-使用 StarCoder 创建一个编程助手
BigCode 开发的 StarCoder,这是一个在一万亿的 token、80 多种编程语言上训练过的 16B 参数量的模型。训练数据多来自 GitHub 上的 issues、使用 Git 提交的代码、Jupyter Notebook 等等。得益于对企业友好的许可证、长度为 8192 的 token、借助 multi-query attention 的快速大批量推理,StarCoder 可以说是当前对代码相关的应用最合适的开源选择。
2023-05-24 22:52:49
10
原创 [算法前沿]--015-中文大模型ChatGLM微调:P-Tuning,LoRA,Full parameter<上>
chatGLM支持中英文,经过约 1T 标识符的中英双语训练,辅以监督微调、 反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 虽然规模不及千亿模型,但大大降低了用户部署的门槛,并且已经能生成相当符合人类偏好的回答。2022年11月,斯坦福大学大模型中心对全球30个主流大模型进行了全方位的评测2,GLM-130B 是亚洲唯一入选的大模型。
2023-05-24 10:25:12
449
原创 [算法前沿]--014-DeepSpeed-Chat 模型训练实战<下>
原因是由于模型被finetune以后,Token对应的词典数量发生了变化,导致输入数据维度变化了(这应该是个bug,在输入端应尽量保持与预训练模型一致)。奖励模型会对模型生成的答案进行打分,Step3 的强化训练会根据这些分数对模型进行优化,从而使最终模型生成更高分的答案。奖励模型同样基于预训练模型进行训练,在这里我们使用了 350M 的 opt 模型。更多详细信息可以参考官方说明。同时使用多个模型的内存消耗问题:此步训练不仅使用被训练的主模型,还使用奖励模型进行评分,因此会占用更多的 GPU 内存。
2023-05-23 14:43:05
214
原创 [算法前沿]--012-保姆级的教程Text2Image:stable-diffusion-v1-5
【代码】[算法前沿]--012-保姆级的教程Text2Image:stable-diffusion-v1-5。
2023-05-21 16:52:11
11
原创 [算法前沿]--011-DeepSpeed-Chat 模型训练实战(上部)
其中,阶段(a)的 GPT-3.5 或 GPT-4 预训练部分是计算量最大的阶段。这不仅需要大量的 GPU(几十到数百个),而且训练时间非常长(数月),因此通常只有大型企业才能进行训练。在本实例中,我们使用了 Facebook 公开的 opt 系列预训练模型,并主要针对 b、c、d 三个步骤进行训练。d) 基于人类反馈的强化学习(RLHF:Reinforcement learning with human feedback)(对应 DS-Chat 中的 Step3)。
2023-05-19 22:49:44
292
1
原创 [算法前沿]--009-HuggingFace介绍(大语言模型底座)
HuggingFace 是一家专注于自然语言处理(NLP)、人工智能和分布式系统的创业公司,创立于2016年。最早是主营业务是做闲聊机器人,2018年 Bert 发布之后,他们贡献了一个基于 Pytorch 的 Bert 预训练模型,即 pytorch-pretrained-bert,大受欢迎,进而将重心转向维护 NLP开源社区。经过这几年的发展,HuggingFace 的开源社区,已经变成了最大的开源模型托管服务的平台,相当于人工智能界的 Github。
2023-05-19 22:48:56
314
原创 [算法前沿]--010-HuggingFace调用bert 词向量(大模型前后处理Encoder和Decoder)
【代码】[算法前沿]--019-HuggingFace调用bert 词向量(大模型前后处理Encoder和Decoder)
2023-05-19 22:48:39
108
原创 docker和 GPUsQA:could not select device driver “” with capabilities: [[gpu]].
问题描述:GPU服务器安装了docker 版本大于19.03,拉取tensorflow官方镜像无法识别GPU?
2023-05-18 17:35:34
439
1
原创 [算法前沿]--004-大语言模型未来趋势以及行业内名字解释
在训练过程中必须采取人工监督的方式,通过人工奖励和惩罚机制,奖励符合人类逻辑的回答,惩罚不符合人类逻辑或者不合法的回答,以修正模型的输出结果。标注人员对这些输出结果进行打分并排序,挑出最好的和最差的解答,并将这些数据用于训练奖励模型。在此期间,针对不合法、不合理、不理解的回答,奖励模型会对其进行惩罚,并剔除出模型回答范围。人工智能通过循环式学习、优化模型、修改输出结果,实现不断迭代升级,最终达到人工智能具有人的逻辑,从而能够以人的方式进行沟通,并且做出令人满意的行为结果。
2023-05-10 19:10:56
481
原创 恶意软件检测基础知识
恶意软件的检测难度是因为恶意软件高度扩散和不同的变体,使得基于签名和图像文件哈希的方法是行不通的. 我们通常说的二进制文件不仅仅是指可执行文件,而且指隐藏在其他文件格式的中的代码,比如(.png格式或者.zip格式),同样文本文档也可以成为恶意软件的载体,尽管他们不是可行性文件格式 .方法整体分为:静态方法和动态恶意软件分析方法。
2023-05-10 06:00:00
479
原创 基于机器学习算法检测恶意软件
PE规范派生子UNIX通用对象文件格式,其实它是一种数据结构,涵盖了windows操作系统加载器管理可行行映射所需要的信息.也就是说在执行程序前加载到内存中.可执行文件中最常见的分节是文本/数据/RSRC/RData和RELOC.注释:恶意软件很少有丰富的图形资源,所以其资源总数较少.PE文件由PE文件头和分节表组成,后面的分节的数据.开源的windows下恶意软件。
2023-05-09 23:00:15
446
原创 [渗透教程]-004-长城防火墙GFW的原理
FF-FF-FF-FF DD-DD-DD-DD 8.8.8.8 20.20.20.20 53 505 百度的IP地址为7.7.7.7。AA-AA-AA-AA CC-CC-CC-CC 192.168.1.10 8.8.8.8 404 53 告诉我百度的IP。8.8.8.8 20.20.20.20 53 505 百度的IP地址为7.7.7.7。20.20.20.20 8.8.8.8 505 53 告诉我百度的IP。53 505 百度的IP地址为7.7.7.7。百度的IP地址为7.7.7.7。
2023-05-01 22:37:23
947
原创 [创新工具和方法论]-01- DOE课程基础知识
实验设计是一种安排实验和分析实验数据的数理统计方法。实验设计(DOE)是开发实验策略的工具,该策略可以使用最少的资源来最大程度地提高学习效果。DOE被广泛应用于许多领域,并在所有自然科学和社会科学中得到广泛应用。实验设计(DoE)是一种优化反应和工艺的统计方法,允许不同因素同时发生变化,以便筛选出反应空间的较佳值。在化学开发领域,由于实验设计(DoE)能使用少量实验评估大量反应参数,其已然成为一种加快反应优化的标准方法。过去数年间,DoE一直被用于实施研发和制造领域的“质量源于设计”(QbD)。
2023-04-30 12:40:07
644
原创 [渗透教程]-017-入侵检测与社交网络安全
如果控制台与IDS同在一台机器,警报信息将显示在监视器上,也可能伴随着声音提示,如果是远程控制台,那么警报将通过IDS内置方法(通常是加密的)、简单网络管理协议(Simple Network Management Protocol, SNMP)(通常不加密)、电子邮件(Electronic Mail, E-mail)、短信息服务(Short Message Service, SMS)、IM(即时通信)或者以上几种方法的混合方式传递给管理员。融合使用异常检测和误用检测模型是实用 IDS 系统的普遍产品策略。
2023-04-24 22:06:54
36
原创 [渗透教程]-015-网络与系统渗透
从方法论的角度来看,渗透测试必须取得被测试目标的法律授权,而网络入侵本身就是一种非法行为,紧接着因为渗透测试是对网络入侵的模仿,所以都经过信息收集、目标踩点、网络扫描、漏洞发现和漏洞利用的过程,不同的是在最后渗透测试会生成测试报告进行对漏洞修补的指导,而入侵可能会利用漏洞进行后门植入并尽力擦除一切痕迹,逃避法律责任。上面的一切对告诉了我们黑客是不按常理出牌的,也不可能存在完全的安全性,只有相对的安全,而我们能做的就是尽最大的可能提高安全防御性,保证网络系统的安全。开放端口,服务器数量及分布。
2023-04-24 22:06:14
729
原创 [渗透教程]-014-网络扫描原理
通过简单的工具进行踩点,来进行以下方面的信息收集:(1)管理信息、技术信息、客户信息和一些账单的信息。当进行军事攻击时,第一步便是收集情报,这是非常重要的,如果收集的数据量是不够的,或者目标是严密防守的,便不会轻易发动攻击,反之只有足够的信息方可确保任务顺利完成。Nmap 是 network mapper 的简称,是一款开源的工具,能够快速的扫描大范围的设备并且能提供大量关于网络设备的有价值信息,他可以用来进行 IT 审计和网络相关的安全分析。报文的发送与接收、扫描知识库的构建于规则匹配、扫描报告的生成。
2023-04-24 22:04:40
561
原创 [渗透教程]-013-网络实体标识及网络监听
它可以通过特殊的加密的通讯协议,在连接在 Internet 上位于不同地方的两个或多个企业内部网之间建立一条专有的通讯线路,就好比是架设了一条专线一样,但是它并不需要真正的去铺设光缆之类的物理线路。主机A发送数据包给主机B,由于是共享网络环境,采用广播模式,数据包被广而告(传送)之局域网内所有在线主机,而主机B和主机C因为网卡设置为正常模式,所以经过对目的 MAC 地址的检查,只有主机B接收到数据包,这时,若嗅探者将网卡设置为混杂模式便可接收到A发送给B的数据包(混杂模式下,不对 MAC 地址做检查)。
2023-04-24 22:03:50
327
原创 [渗透教程]-011-网络安全基本概念
建立 CNVD 的主要目标即与国家政府部门、重要信息系统用户、运营商、主要安全厂商、软件厂商、科研机构、公共互联网用户等共同建立软件安全漏洞统一收集验证、预警发布及应急处置体系,切实提升我国在安全漏洞方面的整体研究水平和及时预防能力,进而提高我国信息系统及国产软件的安全性,带动国内相关安全产品的发展。安全策略(Security Policy):安全策略是指在某个安全区域内,所有与安全活动相关的一套规则,它声明哪些行为是能做的、被允许的,哪些行为是不能做的、被禁止的。
2023-04-24 22:01:39
333
原创 [算法前沿]--003-AGI通用人工智能模型对安全的影响和开源的大模型
从攻防的角度看,是通过防御和反制攻击来保护数据的安全性,其价值在于保护组织的敏感信息和知识产权,减少业务中断和损失,并维护组织的声誉。Chat GPT是生成式人工智能的开山之作,出道即巅峰,是继PC互联网、移动互联网之后又一次革命性创新,其创新性在于突破之前决策式AI基于规则的算法模型框架,跳出之前“数据搬运工”的传统模式,即在海量数据中寻找符合规则策略的数据,经过比对计算,基于当前的环境、条件和状态,准确的找到符合条件的数据,一步一步的走向算法和程序的终点,得出一个确定的决策。
2023-04-24 21:57:00
176
原创 [算法前沿]--004-transformer的前世今生
Transformer被认为是一种新型的深度前馈人工神经网络架构,它利用了自注意机制,可以处理输入序列项之间的长期相关性。在大量领域中采用,如自然语言处理(NLP)、计算机视觉(CV)、,音频和语音处理、化学和生命科学;他们可以在前面提到的学科中实现SOTA性能。TransformerX库存储库。
2023-04-24 21:55:46
367
原创 [算法前沿]--006-大模型时代:必须要掌握的ZERO
0 前言随着人工智能技术在全球的推广应用,自动驾驶、人脸识别、自然语言处理等越来越多领域通过深度学习大大提升了算法的整体性能和表现,GPU 也成为了训练模型不可或缺的基础计算设备。然而,随着模型规模的不断增大,加之模型训练的数据量也越来越大,单个 GPU 的计算能力完全无法满足大规模网络的训练需求。在密集型训练的代表——自然语言处理中,OpenAI 在 2020 年 6 月发布的第三代语言模型 GPT-3 的参数量达到了 1700 亿,相比于之前 GPT-2 的最大版本 15 亿个参数增长了百倍以上。
2023-04-24 21:54:11
334
原创 [算法前沿]--007-ChatGPT详述指令学习关键问题
任务语义可以用一组输入到输出的例子或一条文本指令来表示。传统的自然语言处理(NLP)机器学习方法主要依赖于大规模特定任务样本集的可用性。出现了两个问题: 首先,收集特定于任务的标记示例,不适用于任务可能太复杂或太昂贵而无法注释,或系统需要立即处理新任务的场景;其次,这对用户来说并不友好,因为最终用户可能更愿意在使用系统之前提供任务描述,而不是一组示例。因此,社区对NLP的一种新的监督寻求范式付出了越来越大的兴趣: 从任务指令中学习。尽管取得了令人印象深刻的进展,但社区仍面临一些共同的问题。本文试图从以下几个
2023-04-24 21:52:43
328
原创 [算法前沿]--008-为何AI无法解决一般智能问题?
总结:目前人工智能工作的方法,是在研究员已经想出了如何构建和简化问题的基础上开发的,以便现有的计算机和流程能够解决这些问题。要拥有真正的一般智能,计算机需要拥有能够定义和构建自己的问题的能力。在构建模型的过程中,机器学习研究员必须首先定义要解决的问题,然后“找”一个大型训练数据集,然后找出能够解决该问题的深度学习架构。许多的神经网络的威力是源自其设计和数据叠加的结果,不是其自主的智能。在人工智能发展的历程中,科学家们经常发明新的方法来利用计算机巧妙的方式解决问题,前几十年的人工智能侧重符号系统。
2023-04-24 21:49:36
153
原创 [算法前沿]--008- AIGC和LLM下的Prompt Tuning微调范式
回顾第一节我们介绍的几个预训练语言模型,我们发现目前绝大多数的双向预训练语言模型都包含Masked Language Modeling(MLM),单向预训练语言模型都包含Autoregressive Language Modeling(ALM),这些任务是预训练目标,本质上是预测被mask的位置的词,在训练时让模型理解语言的上下文信息。例如在word2vec的CBOW方法中,随机选取一个固定长度的词袋区间,然后挖掉中心部分的词后,让模型(一个简单的深度神经网络)预测该位置的词。
2023-04-24 15:16:22
465
原创 [渗透教程]-006-渗透测试-Metasploit以及实战教程
Metasploit是一个渗透测试平台,使您能够查找,利用和验证漏洞.是一个免费的可下载的,通过它可以很容易对计算机软件漏洞实施攻击.它本身附带数百个已知软件漏洞的专业级漏洞攻击工具.每个人都可以使用攻击工具来攻击那些未打过补丁的漏洞官方安装教程AUX:辅助模块Exploits:渗透攻击模块Post:后渗透攻击模块payloads:攻击载荷模块Encoders:编码器模块Nops:空指令模块。
2023-04-21 22:01:56
617
原创 [算法前沿]--002-ChatGPT对安全的影响和开源的LLM大模型资源汇总
从攻防的角度看,是通过防御和反制攻击来保护数据的安全性,其价值在于保护组织的敏感信息和知识产权,减少业务中断和损失,并维护组织的声誉。Chat GPT是生成式人工智能的开山之作,出道即巅峰,是继PC互联网、移动互联网之后又一次革命性创新,其创新性在于突破之前决策式AI基于规则的算法模型框架,跳出之前“数据搬运工”的传统模式,即在海量数据中寻找符合规则策略的数据,经过比对计算,基于当前的环境、条件和状态,准确的找到符合条件的数据,一步一步的走向算法和程序的终点,得出一个确定的决策。
2023-04-15 11:26:12
589
原创 [算法前沿]--001-chatgpt可以做什么?如何调教
包括但不限于:替代:语法,谷歌翻译替代:百度、谷歌人工搜索示例:Java 后端开发工程师、React 前端开发工程师、全栈开发工程师、iOS 开发工程师、Android开发工程师等。 回复截图请看这里角色可自行替换[发出此提示后,你应该做一些事情,比如启动一个 docker 容器,然后输入 AI 给你的命令,然后将输出粘贴回来…显然你不应该运行任何会损坏任何东西的命令或违反任何法律等。小心共享此机制生成的会话,因为它们可能会泄露您的 IP 地址或物理位置等最好不要泄露的详细信息。如果命令的输出很大,您通常可
2023-03-31 17:39:33
4236
原创 [强化学习]-网络安全资料汇总
文章目录PapersSurveysDemonstration papersPosition papersRegular PapersPhD ThesesMaster ThesesBachelor ThesesPostersBooksBlogpostsTalksMiscellaneousAwesome Machine Learning for Cyber SecurityAwesome Adversarial Machine LearningPapersSurveys(2022) The Co
2023-03-30 18:43:52
510
原创 [精通Linux]-102-shell 命令学习
在创建test1文件时, umask 的值决定了新文件的默认权限设置。由于 umask 变量在Ubuntu中被设成了 022 (参见第7章),所以系统创建的文件只有文件属主和属组才有读/写权限。sed是一个“非交互式的”面向字符流的编辑器。使用let直接执行基本的算术运算。判断是否是超级用户权限。IDE #集成开发环境。
2023-03-30 18:41:29
114
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人