实验目的##
掌握哈夫曼树的概念、哈夫曼编码及其应用。
掌握生成哈夫曼树的算法。
会用哈夫曼树对传输报文进行编码。
掌握二叉树的二叉链表存储方式及相应操作的实现。
##实验内容##
用哈夫曼编码进行通信时,可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对要传输的数据预先编码。试为这样的信息发送端写一个哈夫曼编码程序。
初始化。从终端输入字符集大小n,以及 n 个字符和 n个权值,试构造一棵哈夫曼树,要求左子树的权值小于右子树的权值。
编码。若输入的权值分别是报文中不同字符出现的频率,利用已建好的哈夫曼树,对n个字符进行哈夫曼编码,然后将结果存入一个结构数组中,并将编码输出。
##源代码##
#include
#include
#include
#include
typedef struct
{
unsigned int weight;
unsigned int parent,lchild,rchild;
}HTNode,HuffmanTree;
typedef char **HuffmanCode;
int min1(HuffmanTree t,int i)
{
int j,flag;
unsigned int k=UINT_MAX;
for(j = 1; j <= i; j++)
if(t[j].weight < k && t[j].parent == 0)
k = t[j].weight,flag = j;
t[flag].parent=1;
return flag;
}
void select(HuffmanTree t,int i,int *s1,int *s2)
{
int j;
*s1=min1(t,i);
*s2=min1(t,i);
if(*s1 > s2)
{
j=*s1;
*s1=*s2;
*s2=j;
}
}
void HuffmanCoding(HuffmanTree *HT,HuffmanCode *HC,int *w,int n)
{
int m,i,s1,s2,start;
unsigned c,f;
HuffmanTree p;
char *cd;
if(n<=1)
return;
m=2*n-1;
*HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
for(p=*HT+1,i=1;i<=n;++i,++p,++w)
{
(*p).weight=*w;
(*p).parent=0;
(*p).lchild=0;
(*p).rchild=0;
}
for(;i<=m;++i,++p)
(*p).parent=0;
for(i=n+1;i<=m;++i)
{
select(*HT,i-1,&s1,&s2);
(*HT)[s1].parent=(*HT)[s2].parent=i;
(*HT)[i].lchild=s1;
(*HT)[i].rchild=s2;
(*HT)[i].weight=(*HT)[s1].weight+(*HT)[s2].weight;
}
*HC=(HuffmanCode)malloc((n+1)*sizeof(char*));
cd=(char*)malloc(n*sizeof(char));
cd[n-1]='\0';
for(i=1;i<=n;i++)
{
start=n-1;
for(c=i,f=(*HT)[i].parent; f!=0; c=f,f=(*HT)[f].parent)
if((*HT)[f].lchild==c)
cd[--start]='0';
else
cd[--start]='1';
(*HC)[i]=(char*)malloc((n-start)*sizeof(char));
strcpy((*HC)[i],&cd[start]);
}
free(cd);
}
int main()
{
HuffmanTree HT;
HuffmanCode HC;
int *w,n,i;
printf("input the number of quanzhi(>1):");
scanf("%d",&n);
w=(int)malloc(nsizeof(int));
printf("input quanzhi):\n",n);
for(i=0;i<=n-1;i++)
scanf("%d",w+i);
HuffmanCoding(&HT,&HC,w,n);
for(i=1;i<=n;i++)
puts(HC[i]);
return 0;
}
##实验截图##