柱状图设置边框_Excel中如何制作组合图表?——以柱状图折线图组合为例

在Excel中,有时候单一的图表类型无法满足数据的多元化展示,这时就要考虑多种图表的组合,所以本文就以柱状图和折线图的组合为例,介绍一下组合图表的制作方法。

在下图中,以年份为横坐标,营业收入用柱状图表示,利润用折线图表示。

利用图表的组合不仅可以看出收入和利润的变化趋势,还可以看出两者之前的相关关系,现在就一起来看看它的制作方法吧。

2c32eaee7e4e486fd32cf208b3191ea3.png

效果图

步骤一:初步生成组合图表。

  1. 选择A1到B7单元格,插入图表——簇状柱形图。
  2. 选择A1到A7和C1到C7单元格,Ctrl+C复制,点下图表中的任意位置,选择开始选项卡中的粘贴——选择性粘贴——确定。这时的图表实际是两个柱状图的组合。(按住Ctrl键可以选择不连续区域)
  3. 选择橙色条形,右键选择系列图表类型,年份和利润分别选择折线图,并勾选次坐标轴复选框。这时图表就变成柱状图和折线图的组合了。
80ad12265aee149d2f9859e3c09d663a.gif

初步组合图表

步骤二:设置纵坐标轴数据并填充柱形图颜色。

1.双击图表左侧的纵坐标轴,在设置坐标轴格式——坐标轴选项中,最大值设置为150,最小值设置为0。(因为表中的收入数据位于0~150之间)

2.双击图表右侧的纵坐标轴,在设置坐标轴格式——坐标轴选项中,最大值设置为20,最小值设置为0。(因为表中利润数据位于0~20之间)

3.双击图表中的柱形,在设置数据系列格式——填充与线条中,选择浅灰色填充。

2751db2823390fb092d50b19ccdc3e79.gif

设置坐标轴数据

步骤三:设置折线格式。

双击折线,在设置数据系列格式——填充与线条最下方选择平滑线前面的复选框,线条颜色选择黑色。

仍然在填充与线条中,选择标记,依次按下面顺序进行操作。

1.标记选项——内置——选择圆点——大小设置为5。

2.填充——纯色填充——选择黑色。

3.边框——选择实线——颜色选择白色。

40d96c1f53ea3b868d9b1fe0e70b84a9.gif

折线格式

步骤四:添加并设置数据标签。

单击图表中的任意区域,在右上角加号中选择数据标签。

选择柱形图的数据标签,点击加号——数据标签——数据标注,并调整数据标注的位置。

双击折线图中的数据标签,在设置数据标签格式中,标签位置选择靠下。

864e6f3dcdaf2125ad82353d616cbb39.gif

数据标签

步骤五:设置纵坐标标题并调整文字方向。

通过右上角加号插入坐标轴标题,并输入坐标轴内容。

发现纵坐标轴标题的文字方向不正确,需要进行调整。分别双击两个坐标轴标题的文本框,在设置坐标轴标题格式——标题选项——大小与属性中,文字方向选择竖排。

9be621fcb808863f449a627904a8527b.gif

设置标题和文字方向

步骤六:调整图表格式和布局。

通过右上角加号添加图表标题、图例,并输入标题内容。

删除横坐标轴标题,图例中的年份,调整位置、图表布局,并对所有文字进行加粗。

0c233f6ee3f4b3b8f9a9f77fc5ed962d.gif

其他格式设置

这就是制作柱状图和折线图组合的方法,感兴趣的话不妨试一下吧。

### 关于频率增强通道注意力 (FECAM) #### FECAM 的基本概念 频率增强通道注意力机制(Frequency Enhanced Channel Attention Mechanism, FECAM)是一种创新性的技术,旨在通过捕捉时间序列中的频率信息来提高深度学习模型的预测能力。该方法特别适用于需要精确处理时间依赖关系的任务。 为了克服传统傅里叶变换带来的高频噪声问题,FECAM采用了离散余弦变换(DCT),有效地避免了由吉布斯现象引起的干扰[^2]。这使得FECAM能够在保持高精度的同时减少不必要的计算复杂度。 #### 工作原理 具体来说,在FECAM框架下: - **预处理阶段**:对于输入的时间序列数据,先对其进行逐通道的DCT变换,从而获得相应的频域表示形式; - **特征抽取过程**:随后利用卷积神经网络或其他合适的架构提取各通道内的潜在模式; - **注意力权重分配**:在此基础上引入SENet风格的通道级关注力模块,根据不同频率分量的重要性赋予不同的权重系数; - **融合并输出最终结果**:最后将加权后的特征图重新映射回原始空间,并作为改进版表征送入后续层继续训练或直接参与决策制定[^3]。 ```python import numpy as np from scipy.fft import dct def apply_dct_to_channels(data): """Apply DCT transformation on each channel of the input data.""" transformed_data = [] for i in range(data.shape[-1]): transformed_channel = dct(data[...,i], norm='ortho') transformed_data.append(transformed_channel) return np.stack(transformed_data, axis=-1) class FrequencyEnhancedChannelAttention(nn.Module): def __init__(self, channels): super().__init__() self.dct_transformer = lambda x: apply_dct_to_channels(x).transpose(0, 3, 1, 2) self.channel_attention = SELayer(channels=channels) # Assuming SELayer is defined elsewhere def forward(self, x): freq_domain_x = self.dct_transformer(x) attended_freqs = self.channel_attention(freq_domain_x) reconstructed_signal = idct(attended_freqs.transpose(0, 2, 3, 1)) return reconstructed_signal # Note that this code snippet assumes a specific implementation context and may require adjustments. ``` 上述代码展示了如何实现一个简单的FECAM版本,其中包含了从时域到频域的数据转换以及基于SENet结构设计的关注力机制的应用[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值