lmd matlab 信号处理程序,LMD经验模态分解matlab程序.doc

本文分享了一段使用MATLAB编写的LMD(经验模态分解)程序,强调了滑动平均在EMD中的作用。作者希望这个程序能为其他研究者提供思路,并邀请拥有更完善LMD程序的人分享。代码下载链接和详细源代码已提供。
摘要由CSDN通过智能技术生成

LMD经验模态分解matlab程序

LMD经验模态分解matlab程序——原味的

曾经也用滑动平均写过LMD,其实滑动平均的EMD才是原汁原味的居于均值分解。

分享给有需要的人,程序写的不好,只是希望提供一种思路。如果谁写了更完美LMD程序,别忘了发我一份,快毕业了,一直没有把LMD写完美,对于我来说始终是个遗憾。来分完美的LMD让我也品尝下,我也无憾了~

代码下载地址:/source/3102096

此处没有提供测试代码,如需要可以点这里:点我

源代码如下:

%原始lmd算法,效果很不好,不知道程序哪里写错function[PF,A,SI]=lmd(m)c=m;k=0wucha1=0.001;n_l=nengliang(m);while 1????k=k+1;????a=1;????h=c;????[pf,a,si]=zhaochun(a,h,wucha1);????c=c-pf;????PF(k,:)=pf;????A(k,:)=a;????SI(k,:)=si;????c_pos=pos(c);????n_c=nengliang(c);????n_pf=nengliang(pf);????if length(c_pos)<3 || n_c

function pos=pos(y)%功能:找序列极值点位置坐标

%y:输入序列%pos:极值点的序列位置坐标m = length(y);d = diff(y);

n = length(d);d1 = d(1:n-1);d2 = d(2:n);indmin = find(d1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值