使用^{}和{a2}对ndarrays-def k_largest_index_argpartition_v1(a, k):
idx = np.argpartition(-a.ravel(),k)[:k]
return np.column_stack(np.unravel_index(idx, a.shape))
def k_largest_index_argpartition_v2(a, k):
idx = np.argpartition(a.ravel(),a.size-k)[-k:]
return np.column_stack(np.unravel_index(idx, a.shape))
def k_largest_index_argsort(a, k):
idx = np.argsort(a.ravel())[:-k-1:-1]
return np.column_stack(np.unravel_index(idx, a.shape))
用argpartition讨论两个版本
k_largest_index_argpartition_v1和{}之间的区别在于我们如何使用argparition。在第一个版本中,我们对输入数组求反,然后使用argpartition来获得最小的k索引的索引,从而有效地得到最大的索引,而在第二个版本中,我们得到了第一个最小的索引,然后选择剩下的最大的索引。在
另外,这里值得一提的是,使用argpartition,我们没有按排序顺序得到索引。如果需要排序顺序,我们需要向np.argpartition提供范围数组,如^{}所述。在
样本运行-
1)二维盒:
^{pr2}$
2)3D案例:In [46]: a # 3D array
Out[46]:
array([[[20, 98, 27, 73],
[33, 78, 48, 59],
[28, 91, 64, 70]],
[[47, 34, 51, 19],
[73, 38, 63, 94],
[95, 25, 93, 64]]])
In [47]: k_largest_index_argsort(a, k=2)
Out[47]:
array([[0, 0, 1],
[1, 2, 0]])
运行时测试-In [56]: a = np.random.randint(0,99999999999999,(3000,4000))
In [57]: %timeit k_largest_index_argsort(a, k=10)
1 loops, best of 3: 2.18 s per loop
In [58]: %timeit k_largest_index_argpartition_v1(a, k=10)
10 loops, best of 3: 178 ms per loop
In [59]: %timeit k_largest_index_argpartition_v2(a, k=10)
10 loops, best of 3: 128 ms per loop
本文介绍了如何使用Python的numpy库从多维数组中获取前k个最大值的索引。通过`argpartition`函数的两种不同用法,即`k_largest_index_argpartition_v1`和`k_largest_index_argpartition_v2`,以及`argsort`实现的`k_largest_index_argsort`函数。示例展示了在2D和3D数组中的应用,并进行了性能测试。
645

被折叠的 条评论
为什么被折叠?



