python - 输出最大/最小的 k 个元素的索引

K = 4
a = np.array([0, 8, 0, 4, 5, 8, 8, 0, 4, 2])
# 最大的 k 个元素的索引
print(np.argpartition(a, -K)[-K:])   # [4 1 5 6]
# 最小的 k 个元素的索引
print(np.argpartition(a, K)[:K])     # [7 0 2 9]
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: k-medoids算法是一种聚类算法,它是k-means算法的一种改进。它的主要思想是选择k个代表性的点作为簇的中心,而不是随机选择点作为中心。这些代表性的点被称为medoids。在算法的迭代过程中,每个点都会被分配到最近的medoid所在的簇中。然后,medoid会被更新为该簇中所有点的中心点,直到簇不再发生变化或达到最大迭代次数为止。 在Python中,可以使用scikit-learn库中的KMedoids类来实现k-medoids算法。该类提供了fit方法来拟合数据,并返回每个点所属的簇的标签。以下是一个使用k-medoids算法对鸢尾花数据集进行聚类的示例代码: ```python from sklearn_extra.cluster import KMedoids from sklearn.datasets import load_iris # 加载鸢尾花数据集 iris = load_iris() X = iris.data # 创建KMedoids对象并拟合数据 kmedoids = KMedoids(n_clusters=3, random_state=0).fit(X) # 获取每个点所属的簇的标签 labels = kmedoids.labels_ # 打印每个点所属的簇的标签 print(labels) ``` 输出结果为: ``` [1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1 0 1 2 2 2 2 0 2 0 2 0 2 2 2 2 2 0 2 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2 2 1 2 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ### 回答2: K-medoids算法是一种基于距离度量的聚类算法,它将数据点划分为K个簇,并且每个簇都有一个代表点(medoid)。在这个算法中,medoids被选择为簇中最能代表其余数据点的点。 K-medoids算法的过程如下: 1. 随机选择k个点作为medoids。 2. 对于每个非medoid点,将其分配到距离最近的medoid所在的簇中。 3. 对于每个簇,选择一个代表点作为medoid,可以选择该簇中使得簇内距离之和最小的点。 4. 重复以上步骤直到medoids不再变化或达到了最大迭代次数。 在鸢尾花数据集上实现K-medoids算法可以采用Python语言,在Python中有很多K-medoids算法的实现库例如sklearn、Scipy、PyClustering等。下面我们以sklearn库为例进行介绍。 首先,我们需要导入需要用到的库以及鸢尾花数据集: ``` from sklearn.datasets import load_iris from sklearn.metrics import pairwise_distances from sklearn_extra.cluster import KMedoids iris = load_iris() X = iris.data ``` 在这里我们使用sklearn内置的load_iris函数载入鸢尾花数据集,并获取数据集中的X数据。接下来,我们可以使用pairwise_distances函数计算所有数据点之间的两两距离矩阵。 ``` D = pairwise_distances(X, metric="euclidean") ``` 这里采用了欧氏距离作为距离度量方式。接下来我们需要设置K-medoids算法的K值和最大迭代次数。在这里,我们将K设为3,最大迭代次数为100。 ``` kmedoids = KMedoids(n_clusters=3, random_state=0, max_iter=100).fit(D) ``` fit函数可以训练模型并返回掩码数组,其中每个元素都是数据点与最近medoid之间距离的索引。最后我们可以使用labels_方法获取模型聚类后的每个数据点的所属类别。这里得到的类别标签可以与真实标签进行比较,我们可以用调整互信息(adjusted mutual information)指标衡量聚类的准确程度。 ``` labels = kmedoids.labels_ from sklearn.metrics.cluster import adjusted_mutual_info_score ami = adjusted_mutual_info_score(iris.target, labels) print(f"AMI: {ami}") ``` 在这里,adjusted_mutual_info_score函数可以计算聚类结果和真实标签之间的AMI得分。最后,我们可以通过绘制散点图来观察聚类结果。 ``` import matplotlib.pyplot as plt plt.scatter(X[:, 0], X[:, 1], c=labels) plt.title("K-medoids Clustering Results") plt.show() ``` 总而言之,K-medoids算法是一种基于距离度量的聚类算法,它可以对数据进行聚类,并且每个簇都有一个代表点(medoid)。在Python中,我们可以使用sklearn库来实现K-medoids算法,并且用调整互信息指标和散点图来评价聚类结果的好坏。 ### 回答3: k-medoids算法是基于聚类的一种常见算法,它属于代表点类的聚类算法。K-medoids算法通过一系列迭代的方式寻找一组能够最好地代表数据集的点(中心点),从而将数据集分为K个不同的类。 在k-medoids算法中,每个聚类都有一个中心点或者是一个代表性点。默认情况下,该点是聚类中所有点的质心。但是,在k-medoids算法中,该点必须是聚类中所有点的实际数据点,因此它也被称为“代表点”。 在k-medoids算法中,我们需要确定聚类的数量K,然后通过迭代寻找所有数据点到每个聚类中心的最短距离,并将其分配给最近的聚类。接下来,我们可以使用一些指标(如误差平方和)来度量每个聚类中所有点到聚类中心的距离,从而选择最佳的中心点。这个过程会反复多次,在每次迭代中,我们会更改代表点并分配新的数据点,直到算法收敛。 在Python中,我们可以使用scikit-learn库中的k-medoids算法来进行实现。在这个库中,k-medoids被实现为PAM(Partitioning Around Medoids)。为了使用这个算法,我们需要首先导入必要的库并加载数据。我们可以使用以下示例代码加载Iris数据集: ``` from sklearn import datasets iris = datasets.load_iris() X = iris.data y = iris.target ``` 接下来,我们可以使用pam算法来拟合我们的数据: ``` from sklearn_extra.cluster import KMedoids kmedoids = KMedoids(n_clusters=3, metric='euclidean', init='heuristic', max_iter=300, random_state=0) kmedoids.fit(X) ``` 在这个例子中,我们使用了n_clusters=3,以及euclidean作为距离度量方法。此外,我们还使用了heuristic初始化方法,将最大迭代次数设置为300,并指定了一个随机种子。最终,我们可以通过kmedoids.labels_属性获取分类结果。 总之,k-medoids算法是一种基于聚类的有效算法,可以帮助我们将数据集分为不同的类别。它是一个比k-means更强大的算法,因为它可以处理非算术中心的聚类,例如图像聚类和形状聚类。在Python中,我们可以使用scikit-learn库中的KMedoids类来进行实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值