packagecom.niugang.config;importjava.util.HashMap;importjava.util.Map;importorg.apache.kafka.clients.consumer.ConsumerConfig;importorg.apache.kafka.clients.consumer.OffsetAndMetadata;importorg.apache.kafka.clients.consumer.OffsetCommitCallback;importorg.apache.kafka.clients.producer.ProducerConfig;importorg.apache.kafka.common.TopicPartition;importorg.apache.kafka.common.serialization.StringDeserializer;importorg.apache.kafka.common.serialization.StringSerializer;importorg.slf4j.Logger;importorg.slf4j.LoggerFactory;importorg.springframework.context.annotation.Bean;importorg.springframework.context.annotation.Configuration;importorg.springframework.kafka.annotation.EnableKafka;importorg.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;importorg.springframework.kafka.core.ConsumerFactory;importorg.springframework.kafka.core.DefaultKafkaConsumerFactory;importorg.springframework.kafka.core.DefaultKafkaProducerFactory;importorg.springframework.kafka.core.KafkaTemplate;importorg.springframework.kafka.core.ProducerFactory;importorg.springframework.kafka.listener.AbstractMessageListenerContainer;importcom.niugang.controller.SenderConttoller;/***
* @ClassName: KafkaConfig
* @Description:kafka配置类,基于spring java纯配置的
*@author: niugang
* @date: 2018年10月20日 下午8:04:26
* @Copyright: 863263957@qq.com. All rights reserved.
**/@Configuration
@EnableKafkapublic classKafkaConfig {private Logger logger = LoggerFactory.getLogger(KafkaConfig.class);
@Beanpublic ConcurrentKafkaListenerContainerFactorykafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory factory = new ConcurrentKafkaListenerContainerFactory<>();//偏移量提交方式//factory.getContainerProperties().setAckMode(AbstractMessageListenerContainer.AckMode.COUNT);//异步提交偏移量(默认就是true)//factory.getContainerProperties().setSyncCommits(true);//回调函数经常用于记录提交错误
/*factory.getContainerProperties().setCommitCallback(new OffsetCommitCallback() {
@Override
public void onComplete(Map offsets, Exception exception) {
if (exception != null) {
logger.error("Commit failed for effsets {}", offsets, exception);
}
}
});*/factory.setConsumerFactory(consumerFactory());returnfactory;
}/*** 消费者工厂配置
*
*@return
*/@Beanpublic ConsumerFactoryconsumerFactory() {return new DefaultKafkaConsumerFactory<>(consumerProps());
}/*** 生产者工厂配置
*
*@return
*/@Beanpublic ProducerFactoryproducerFactory() {return new DefaultKafkaProducerFactory<>(senderProps());
}/*** kafka发送消息模板
*
*@return
*/@Beanpublic KafkaTemplatekafkaTemplate() {return new KafkaTemplate(producerFactory());
}/*** 消费者监听
*
*@return
*/@BeanpublicConsumerListener listener() {return newConsumerListener();
}/*** 消费配置方法
*
*@return
*/
private MapconsumerProps() {
Map props = new HashMap<>();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG,"kafka_group_1");/*** enable.auto.commit 默认5秒自动提交偏移量*/props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true);
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG,"100");
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG,"15000");/*** kafka是基于key-value键值对的,以下配置key和value的反序列化放*/props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);returnprops;
}/*** 生产者配置方法
*
* 生产者有三个必选属性
*
* 1.bootstrap.servers broker地址清单,清单不要包含所有的broker地址,
* 生产者会从给定的broker里查找到其他broker的信息。不过建议至少提供两个broker信息,一旦 其中一个宕机,生产者仍能能够连接到集群上。
*
*
* 2.key.serializer broker希望接收到的消息的键和值都是字节数组。 生产者用对应的类把键对象序列化成字节数组。
*
*
* 3.value.serializer 值得序列化方式
*
*
*
*@return
*/
private MapsenderProps() {
Map props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"localhost:9092");/*** 当从broker接收到的是临时可恢复的异常时,生产者会向broker重发消息,但是不能无限
* 制重发,如果重发次数达到限制值,生产者将不会重试并返回错误。
* 通过retries属性设置。默认情况下生产者会在重试后等待100ms,可以通过 retries.backoff.ms属性进行修改*/props.put(ProducerConfig.RETRIES_CONFIG,0);/*** 在考虑完成请求之前,生产者要求leader收到的确认数量。这可以控制发送记录的持久性。允许以下设置:
*
*
* acks = 0 code>如果设置为零,则生产者将不会等待来自服务器的任何确认。该记录将立即添加到套接字缓冲区并视为已发送。在这种情况下,无法保证服务器已收到记录,并且
* retries code>配置将不会生效(因为客户端通常不会知道任何故障)。为每条记录返回的偏移量始终设置为-1。
*
acks = 1
* 这意味着leader会将记录写入其本地日志,但无需等待所有follower的完全确认即可做出回应。在这种情况下,
* 如果leader在确认记录后立即失败但在关注者复制之前,则记录将丢失。
*
acks = all
* 这意味着leader将等待完整的同步副本集以确认记录。这保证了只要至少一个同步副本仍然存活,记录就不会丢失。这是最强有力的保证。
* 这相当于acks = -1设置*/props.put(ProducerConfig.ACKS_CONFIG,"1");/*** 当有多条消息要被发送到统一分区是,生产者会把他们放到统一批里。kafka通过批次的概念来 提高吞吐量,但是也会在增加延迟。*/
//以下配置当缓存数量达到16kb,就会触发网络请求,发送消息
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);//每条消息在缓存中的最长时间,如果超过这个时间就会忽略batch.size的限制,由客户端立即将消息发送出去
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG,33554432);//key的序列化方式
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);//value序列化方式
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);returnprops;
}
}