3阶连续时间Delta-Sigma ADC的Matlab仿真模型

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文提供了使用Matlab软件进行数字信号处理的实践案例,详细介绍了3阶连续时间Delta-Sigma(ΔΣ)模数转换器(ADC)的仿真模型。Delta-Sigma ADC采用高阶低通滤波器,通过多次采样和积分来提高信号的分辨率和信噪比。在三阶系统中,三个连续的积分器有助于进一步降低量化噪声。仿真代码包含时序仿真、频域分析和功率谱等功能,允许用户深入研究ADC的性能。代码通过诸如 sim fft psd scope plot 等Matlab函数,来执行时序仿真、频域分析和结果展示。文件名“CTSDM_3rd3b20osr400M_Matlab_Model_for_EETOP”揭示了模型的具体参数,例如连续时间调制器、三阶系统、3位分辨率、400倍过采样率。通过分析和运行该仿真代码,用户可以更好地理解Delta-Sigma ADC的工作原理,并掌握Matlab中的信号处理仿真技巧。 一个关于3阶连续时间Delta-Sigma ADC的Matlab仿真代码

1. 3阶连续时间Delta-Sigma ADC仿真

1.1 Delta-Sigma ADC的原理简介

Delta-Sigma (ΔΣ) ADC以其高分辨率和噪声整形技术在模拟-数字转换器(ADC)设计领域中占据了重要位置。它通过过采样和噪声整形技术将信号的量化噪声转移到更高的频率范围,从而达到提高有效位数的目的。Delta-Sigma ADC特别适合于高精度数据转换的应用场景,如音频处理、高精度测量设备等。

1.2 3阶Delta-Sigma ADC的优势

3阶连续时间Delta-Sigma ADC相对于低阶系统来说,能够提供更好的线性度和动态范围。这种设计通过更复杂的调制器结构实现了更高阶的噪声整形,使得在较低的采样频率下仍能保持较高的信噪比(SNR)和较小的量化噪声。这是通过三个积分器实现的,它们轮流对输入信号进行采样和量化。

1.3 仿真环境的建立

在MATLAB环境中,我们可以使用Simulink这一强大的仿真工具来搭建3阶连续时间Delta-Sigma ADC模型。在构建仿真模型时,我们需要定义好各个组件,包括模拟信号源、量化器、数字-模拟反馈环路等。接下来,设置适当的模拟和数字滤波器,以及过采样率(OSR)来优化ADC的性能,准备进行仿真测试。

2. 采样和量化过程的提高精度

2.1 采样理论的深入解析

2.1.1 采样的基本原理

采样是将连续时间信号转换为离散时间信号的过程,这是模拟信号数字化的第一步。根据奈奎斯特采样定理,为了避免混叠,采样频率必须至少是信号最高频率成分的两倍。在实际应用中,通常选择更高的采样率以获得更好的信号保真度和设计的灵活性。

具体来说,采样过程涉及到以下几个关键概念: - 奈奎斯特率 :采样频率至少为信号最高频率的两倍。 - 混叠现象 :当采样频率低于奈奎斯特率时,高频信号成分会“折叠”到较低的频率范围内,产生失真。 - 抗混叠滤波器 :在采样前使用低通滤波器去除高于采样频率一半的所有信号成分。

% 采样过程的一个简单示例
Fs = 1000; % 采样频率
T = 1/Fs;  % 采样间隔时间
L = 1500;  % 采样点数
t = (0:L-1)*T; % 时间向量

% 生成一个模拟信号
f1 = 50; % 信号频率为50Hz
f2 = 120; % 另一个信号频率为120Hz
x = 0.7*sin(2*pi*f1*t) + sin(2*pi*f2*t);

% 对信号进行采样
x_sampled = x(1:10:end); % 每隔10个点采样一个点

% 绘制原始信号和采样信号的图形进行比较
figure;
subplot(2,1,1);
plot(t, x);
title('原始信号');
xlabel('时间');
ylabel('幅度');

subplot(2,1,2);
plot(t(1:10:end), x_sampled, '-o');
title('采样信号');
xlabel('时间');
ylabel('幅度');

在上述代码中,我们首先定义了采样频率 Fs 和采样间隔 T ,然后生成了一个由两个不同频率成分组成的模拟信号 x 。之后,我们使用下标采样技术对信号进行了抽样,并绘制了原始信号和采样后的信号图形。

2.1.2 提升采样精度的技术路径

为了提升采样精度,工程师们采取了各种技术手段,其中包括: - 使用高精度模拟-数字转换器(ADC) :更高质量的ADC能够提供更精确的数字化值。 - 改善采样时钟的准确性 :时钟的稳定性和精确性直接影响采样时间点的准确性。 - 采用差分采样技术 :通过对比两个信号的差异来消除噪声和干扰。 - 应用先进的采样算法 :如插值和过采样技术,可以在采样过程中进一步提高信号的精度。

2.2 量化过程的优化策略

2.2.1 量化的理论基础

量化是将连续的信号幅值离散化的过程,即将信号的无限可能性的幅值减少到有限的可数集合中。量化级别越高,即每个离散幅值之间的差距越小,量化的精度越高,但同时也会带来更复杂的量化噪声和更广泛的需求。

量化的精度受到以下因素影响: - 量化位数 :量化位数越高,量化的分辨率也就越高。 - 量化误差 :量化过程中固有的误差,这个误差限制了系统的精度。 - 非线性量化 :在某些应用中采用非线性量化可以提高特定范围内的精度。

% 简单的量化过程演示
n_bits = 4; % 量化位数
n_levels = 2^n_bits; % 量化级别数量
quant_error = 1/(2*n_levels); % 理论量化误差

% 一个模拟信号
A = 1; % 信号的振幅
t = 0:1/1000:1; % 时间向量
f = 100; % 信号频率
x = A*sin(2*pi*f*t); % 生成的信号

% 量化信号
x_quant = round((x + A)/(2*A*n_levels))*2*A/n_levels;

% 绘制量化前后的信号图
figure;
subplot(2,1,1);
plot(t, x);
title('未量化信号');
xlabel('时间');
ylabel('幅度');

subplot(2,1,2);
plot(t, x_quant, '-o');
title('量化信号');
xlabel('时间');
ylabel('幅度');

在该代码段中,我们创建了一个正弦波信号并对其进行量化。通过 round 函数进行量化处理,得到的是量化后的信号。最后通过绘图展示了量化前后信号的差异。

2.2.2 高精度量化方法的应用

为了实现高精度的量化,可以采用以下方法: - 过采样技术 :通过增加采样率来分散量化噪声,提高信号质量。 - 噪声整形技术 :通过特定的滤波器设计来改变量化噪声的频率分布。 - Delta-Sigma调制 :利用过采样和噪声整形技术来提高量化效率。

高精度量化方法在数字音频和高精度数据采集系统等领域有着广泛的应用。例如,Delta-Sigma ADC在实现高分辨率的同时,能够通过内部噪声整形滤波器有效降低量化噪声,从而提高整体信号质量。

3. 过采样率(OSR)的作用与应用

3.1 OSR对ADC性能的影响

3.1.1 过采样原理简述

过采样(Oversampling)技术是提高模拟到数字转换器(ADC)性能的关键技术之一。过采样指的是以比奈奎斯特率更高的频率对信号进行采样。这一技术的原理是基于信号处理中的一个基本概念:在一个固定带宽内,提高采样率可以分散量化噪声,从而在相同的总噪声功率下降低噪声能量密度。

在OSR增加的情况下,可以达到以下效果: - 噪声功率分散 :量化噪声的功率在更宽的频带内分布,每单位带宽内的噪声功率降低。 - 信噪比提升 :由于噪声功率的降低,有效提高了信号相对于噪声的比例,即信噪比(SNR)。 - 提高分辨率 :在理论上,每增加一倍的过采样率,信噪比增加3dB,这相当于增加了一位的有效分辨率。

3.1.2 OSR与信噪比(SNR)的关系

OSR与SNR的关系可以通过一个数学公式来描述: [ SNR_{(dB)} \approx 10 \cdot \log_{10}(2 \cdot OSR) + 1.5 \cdot \log_{10}(ENOB) + 1.76 ] 其中,ENOB(Effective Number of Bits)是ADC的有效位数,即ADC的实际性能表现。

通过上述公式可以得出,增加OSR可以提升SNR,但这种提升是非线性的。提高OSR的效果会随着OSR的增大而逐渐减少。例如,当OSR从4倍提高到8倍时,SNR的提升会远大于从8倍提高到16倍的提升。因此,在设计过程中,需要权衡OSR的增加和SNR的提升之间的关系,以达到最佳的成本效益比。

3.2 OSR优化技术的实战演练

3.2.1 OSR调整策略

在实际应用中,调整OSR需要考虑到ADC的类型、所需的精度、功耗预算以及设计的复杂度。以下是一些常见的OSR调整策略:

  1. 系统需求分析 :首先明确ADC的性能要求,比如所需的动态范围、信噪比等指标。
  2. 初步确定OSR :根据设计要求选择一个初始OSR值,可以使用上述SNR公式作为参考。
  3. 仿真验证 :使用仿真软件(如Matlab)进行建模仿真,评估不同OSR值对性能的实际影响。
  4. 优化迭代 :根据仿真结果,进行OSR的微调,并重新评估性能指标。重复此过程直到满足设计要求。
  5. 硬件实现 :在硬件原型上测试并验证仿真结果,根据实际测试结果可能需要进一步调整OSR。
3.2.2 实例操作:OSR调整对性能的改善分析

为了进一步说明OSR调整对ADC性能的影响,我们可以通过一个具体实例进行分析。假设有一个音频应用,其要求的动态范围至少为96dB,采样率为48kHz。

  1. 系统要求分析 :确定96dB动态范围至少需要16位有效位数。
  2. 初步确定OSR :根据设计要求选择初始OSR值为32。
  3. 仿真验证 :使用Matlab建立Delta-Sigma ADC模型,设定OSR为32,观察性能指标。

代码示例(Matlab):

% 假设 ADC 的参数
OSR = 32; % 过采样率
f_sample = 48e3; % 采样频率
f_signal = 2e3; % 信号频率
N_bits = 16; % 位数

% 仿真设置
SNR_sim = 6.02 * N_bits + 1.76 + 10 * log10(2 * OSR) + 1.5 * log10(N_bits) - 1.5;

% 显示仿真结果
fprintf('仿真结果:当OSR为%d时,预计SNR为 %.2f dB\n', OSR, SNR_sim);
  1. 优化迭代 :如果仿真结果未达到要求,可调整OSR并重新仿真,直到满足96dB的要求。

  2. 硬件实现 :根据仿真结果,在实际硬件上实现ADC,并进行性能测试。

通过这个实例操作,我们可以看到OSR的调整对于改善ADC性能的重要性和效果。最终,通过合理的OSR选择与调整,可以达到预期的设计目标,并且有效地提升整个系统的性能。

通过以上分析,我们了解了OSR对ADC性能的影响以及如何应用OSR优化技术来提升系统性能。这一过程不仅需要理论知识的支撑,还要求设计者具备实际操作和仿真验证的能力。在本章节的后续部分,我们将继续探讨时序仿真分析与频域分析,进一步深化对ADC设计的理解。

4. 时序仿真分析与频域分析

4.1 时序仿真分析的核心要点

时序仿真分析是设计与分析Delta-Sigma模数转换器(ADC)中不可或缺的一部分。通过时序分析,工程师能够确定信号在不同时间点的特性,以及系统对信号变化的响应时间。Matlab是进行时序仿真的强有力工具,它提供了一系列的函数和工具箱用于模拟和分析时间域中的信号。

4.1.1 时序分析的Matlab实现

在Matlab中,时序分析通常涉及到信号的生成、处理以及时域内信号特性的计算。时序仿真可以帮助设计人员评估系统对信号的跟踪能力和系统中可能存在的时延问题。对于Delta-Sigma ADC来说,时序分析有助于优化滤波器设计,以确保最佳性能。

为了实现时序分析,首先需要准备信号数据。在Matlab中,可以使用 linspace 函数生成时间向量,然后利用 sin 等函数生成对应的模拟信号。接下来,可以使用 filter 函数对信号进行滤波处理,模拟真实世界中的滤波器对信号的影响。

% 生成时间向量
Fs = 1000; % 采样频率
T = 1/Fs;  % 采样周期
L = 1500;  % 信号长度
t = (0:L-1)*T; % 时间向量

% 生成正弦信号
f = 50; % 信号频率
signal = 0.7*sin(2*pi*f*t);

% 模拟滤波处理
[b, a] = butter(2, 0.1); % 低通滤波器设计,截止频率为0.1*Fs
filtered_signal = filter(b, a, signal);

% 时序仿真结果的展示
figure;
subplot(2,1,1);
plot(t, signal);
title('Original Signal');
xlabel('Time (seconds)');
ylabel('Amplitude');

subplot(2,1,2);
plot(t, filtered_signal);
title('Filtered Signal');
xlabel('Time (seconds)');
ylabel('Amplitude');

4.1.2 关键节点的时序评估

在时序分析中,对关键节点的评估尤为关键。关键节点可能包括模数转换器的输入、各级积分器的输出等。这些节点的时序信息对于理解系统的整体行为至关重要。利用Matlab的数据分析能力,可以对这些关键节点进行详细的时序评估。

在上述示例代码中,我们通过绘制信号的图形来直观地观察原始信号和滤波后信号的时序特征。对于更深入的分析,可以使用 findpeaks 函数来检测信号中的峰值,或使用 crossings 函数来确定信号穿越某一阈值的时刻。

4.2 频域分析与频谱计算

频域分析是对信号进行变换,使其从时域转换到频域。这样,可以更方便地分析信号的频率成分,识别出噪声和干扰信号。频域分析对于理解系统对不同频率信号的响应能力至关重要。

4.2.1 频域分析的重要性

在设计Delta-Sigma ADC时,频域分析不仅可以帮助工程师理解信号的频谱组成,还能够用来确定调制器的性能,如信噪比(SNR)和总谐波失真(THD)。在频域中,我们可以清晰地看到不同频率的干扰和噪声源,进而采取相应的措施进行抑制。

4.2.2 利用Matlab进行频谱计算

Matlab提供了强大的信号处理工具箱,其中的 fft 函数可以用来进行快速傅里叶变换(FFT),它是频域分析中的核心技术之一。通过FFT,可以将信号从时域转换到频域,并计算出信号的频谱。

以下是一个使用Matlab进行频谱计算的示例代码。在此代码中,我们先对原始信号进行FFT变换,然后使用 abs fftshift 函数计算出频谱,并绘制出来。

% 对滤波后的信号进行FFT变换
signal_fft = fft(filtered_signal);
signal_fft = fftshift(signal_fft); % 将零频分量移至频谱中心
N = length(signal_fft);
f_axis = (-N/2:N/2-1)*(Fs/N); % 生成对应的频率轴

% 计算并绘制频谱
figure;
plot(f_axis, abs(signal_fft)/L);
title('Single-Sided Amplitude Spectrum of Filtered Signal');
xlabel('Frequency (Hz)');
ylabel('|F(f)|');

% 识别和标注频谱中的重要成分
[peaks, locs] = findpeaks(abs(signal_fft), 'MinPeakDistance', Fs/10);
hold on;
plot(locs, peaks, 'ro');
hold off;

在上述代码中, findpeaks 函数被用来识别频谱中的峰值,这些峰值可能对应信号中的主要频率成分。通过这些峰值,我们可以更直观地了解信号的频域特性。

通过以上两个小节的介绍,我们可以看到时序仿真分析与频域分析在Delta-Sigma ADC设计中的重要性。Matlab提供了强大的工具来帮助工程师完成这两项分析工作,并对设计进行优化。下一章,我们将继续深入探讨功率谱分析与噪声分布评估,这些分析将进一步帮助我们理解信号的质量和噪声特性。

5. 功率谱分析与噪声分布评估

5.1 功率谱密度(PSD)分析方法

5.1.1 PSD的定义和计算方式

功率谱密度(PSD)是描述信号功率按频率分布的函数,对分析和理解信号中的频率成分至关重要。在连续时间信号的背景下,PSD定义为信号自相关函数的傅里叶变换。对于离散时间信号,PSD则可以由其自相关序列计算得出。计算PSD的一个常见方法是使用Welch的方法,这种方法通过将信号分段并进行窗函数处理,然后求取每一段的傅里叶变换,最后对这些变换取平均值来估计PSD。

在Matlab中,计算PSD通常使用 pwelch 函数,其基本语法如下:

[pxx,f] = pwelch(x) % x是信号向量,pxx是PSD,f是频率向量

通过该函数,我们可以获得信号的功率谱密度估计。 pwelch 函数默认使用50%的重叠Hanning窗来处理信号段,用户可以根据需要调整窗类型、重叠百分比和段长度。

5.1.2 Matlab中PSD分析的应用实例

为了更好地理解PSD的应用,我们可以通过一个实际的示例来说明。假设我们有一个模拟的Delta-Sigma ADC输出信号,我们希望分析其噪声分布。

Fs = 1000;          % 采样频率1kHz
t = 0:1/Fs:1-1/Fs;  % 时间向量
f1 = 50;            % 信号频率50Hz
f2 = 120;           % 噪声频率120Hz
n = randn(size(t)); % 噪声信号
x = sin(2*pi*f1*t) + n.*sin(2*pi*f2*t); % ADC输出信号

% 计算并绘制功率谱密度
[pxx, f] = pwelch(x,[],[],[],Fs);
plot(f,10*log10(pxx));
title('信号的功率谱密度');
xlabel('频率 (Hz)');
ylabel('功率/频率 (dB/Hz)');

在这个例子中,我们模拟了一个叠加有噪声的正弦波信号,并使用 pwelch 函数计算了其功率谱密度。绘制出来的图形将展示信号频率成分和噪声水平。对于Delta-Sigma ADC设计者来说,通过这种分析能够识别出信号中的主要噪声源并进行相应的抑制。

5.2 噪声分布评估的实战技巧

5.2.1 噪声源的识别与分类

在评估ADC系统的噪声分布时,首先需要识别并分类不同的噪声源。常见的噪声源包括量化噪声、热噪声、闪烁噪声和直流偏置等。通过对ADC输出信号进行频率分析,我们可以将噪声分为低频噪声(如1/f噪声)和高频噪声(如量化噪声)。这一步骤对于后续的噪声优化策略至关重要。

5.2.2 基于Matlab的噪声分布优化策略

在识别噪声源之后,我们可以采取一系列优化策略来改善系统性能。例如,我们可以通过添加滤波器来减少高频噪声,或者通过温度控制和电路优化来降低热噪声。Matlab提供了强大的工具和函数,如滤波器设计工具( fdatool )和滤波函数( filter ),允许我们设计和应用各种滤波器来处理信号。

% 设计一个简单的低通滤波器
[b, a] = butter(3, 0.3); % 3阶巴特沃斯滤波器,截止频率为0.3*Fs/2
filtered_signal = filter(b, a, x); % 应用滤波器

% 重新计算滤波后的信号功率谱密度
[pxx_filtered, f_filtered] = pwelch(filtered_signal,[],[],[],Fs);
plot(f_filtered,10*log10(pxx_filtered));
title('滤波后的信号功率谱密度');
xlabel('频率 (Hz)');
ylabel('功率/频率 (dB/Hz)');

通过比较滤波前后的功率谱密度,我们可以评估滤波器对噪声抑制的效果。这种方法对于优化Delta-Sigma ADC的噪声性能非常有效,它有助于提高系统的整体性能。

6. Matlab在Delta-Sigma ADC设计中的高级应用

在数字信号处理领域,Matlab不仅是一个强大的数学计算工具,更是设计和仿真复杂系统的得力助手。特别是在Delta-Sigma模数转换器(ADC)的设计中,Matlab提供了许多专门的函数和工具箱来帮助工程师快速搭建原型、分析性能和进行优化。

6.1 Matlab函数在信号处理中的作用

Matlab提供了一系列内建函数,对于信号处理和系统分析至关重要。下面将详细介绍几个关键函数及其在Delta-Sigma ADC设计中的应用。

6.1.1 sim 函数的仿真功能

在设计过程中, sim 函数是执行仿真模型的主要工具。它允许用户根据预定义的仿真参数和模块配置,快速地运行整个系统仿真。对于Delta-Sigma ADC,用户可以通过 sim 函数来模拟整个调制过程,观察输出信号和噪声谱,从而分析系统性能。

% 创建Delta-Sigma ADC的Simulink模型并进行仿真
model = 'DeltaSigmaADC';
open_system(model);
simOut = sim(model);

6.1.2 fft psd 函数在频谱分析中的应用

频谱分析是评估Delta-Sigma ADC性能的关键步骤。 fft 函数用于计算信号的快速傅里叶变换,而 psd 函数用于估计功率谱密度。结合使用这两个函数,工程师可以得到信号的频谱分布,这对于评估系统噪声和量化误差至关重要。

% 假设x是采样得到的信号
X = fft(x);
n = length(x);
P2 = abs(X/n);
P1 = P2(1:n/2+1);
P1(2:end-1) = 2*P1(2:end-1);

% 频率向量
f = Fs*(0:(n/2))/n;

% 功率谱密度
PSD = 10*log10(P1);

% 绘制功率谱密度
figure;
plot(f,PSD);
title('Power Spectral Density');
xlabel('Frequency (Hz)');
ylabel('Power/Frequency (dB/Hz)');

6.1.3 scope plot 函数的直观展示效果

为了直观展示仿真结果, scope plot 函数是Matlab中的重要可视化工具。 scope 函数在Simulink环境中使用,可以动态地显示信号的变化情况;而 plot 函数则是在Matlab命令窗口中绘制静态图像。

% 使用scope显示信号
scope(x);

% 使用plot绘制信号
figure;
plot(x);
title('Signal over Time');
xlabel('Sample Index');
ylabel('Amplitude');

6.2 Delta-Sigma调制器的设计与实现

设计Delta-Sigma调制器是构建高效能ADC的核心步骤,Matlab提供了设计和实现调制器的高级函数和环境。

6.2.1 调制器设计基础

调制器的设计包括选择合适的阶数、采样率和反馈系数等。这些参数的选择将直接影响到ADC的性能指标,如信噪比(SNR)、动态范围(DR)和积分非线性(INL)。

6.2.2 Matlab环境下调制器的构建与仿真

在Matlab环境中,工程师可以利用内置的Simulink模块搭建Delta-Sigma调制器,并使用 sim 函数进行仿真。此外,Matlab的Filter Design and Analysis工具箱可以辅助设计滤波器,以达到所需的过采样率和噪声整形效果。

% 设计一个一阶Delta-Sigma调制器
% 使用Simulink模块
open_system('dsmod1.slx');
sim('dsmod1.slx');

6.3 ADC性能评估与优化

性能评估是Delta-Sigma ADC设计的关键环节,而Matlab为此提供了强大的分析和优化工具。

6.3.1 ADC性能评估的关键指标

性能评估的关键指标包括信噪比(SNR)、总谐波失真加噪声(THD+N)和无杂散动态范围(SFDR)。这些指标能够全面地反映ADC的性能。

6.3.2 利用Matlab进行ADC性能优化

通过调整调制器的参数,使用Matlab的优化工具箱可以寻找到最佳的系统性能。优化工具箱提供了多种算法,如遗传算法、粒子群优化等,可以对系统进行全局搜索,以获得最优性能。

% 定义优化问题
% 这里以信噪比最大化为例
objFun = @(x) -psd(x); % 注意取负号,因为我们要最大化SNR
lb = [0.1, 0.1]; % 参数的下界
ub = [1, 10]; % 参数的上界

% 使用优化工具箱中的算法求解
x0 = [0.5, 5]; % 初始猜测
options = optimoptions('ga', 'MaxGenerations', 100, 'PopulationSize', 50);
[x_opt, fval] = ga(objFun, 2, [], [], [], [], lb, ub, [], options);

% 使用最优参数重新仿真
% ...

在优化过程中,参数的调整将导致性能的变化,通过不断的迭代,可以逐渐逼近最佳性能。Matlab提供的工具箱在这一过程中起着至关重要的作用,它不仅降低了算法的复杂度,也提高了寻找最优解的效率。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文提供了使用Matlab软件进行数字信号处理的实践案例,详细介绍了3阶连续时间Delta-Sigma(ΔΣ)模数转换器(ADC)的仿真模型。Delta-Sigma ADC采用高阶低通滤波器,通过多次采样和积分来提高信号的分辨率和信噪比。在三阶系统中,三个连续的积分器有助于进一步降低量化噪声。仿真代码包含时序仿真、频域分析和功率谱等功能,允许用户深入研究ADC的性能。代码通过诸如 sim fft psd scope plot 等Matlab函数,来执行时序仿真、频域分析和结果展示。文件名“CTSDM_3rd3b20osr400M_Matlab_Model_for_EETOP”揭示了模型的具体参数,例如连续时间调制器、三阶系统、3位分辨率、400倍过采样率。通过分析和运行该仿真代码,用户可以更好地理解Delta-Sigma ADC的工作原理,并掌握Matlab中的信号处理仿真技巧。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值