1. 环境工具
语言:c语言
作图工具:gnuplot
2. 快速傅里叶变换
对于时域的幅度调制信号,它是一个周期信号,分析其特性时十分复杂,如果把时域的信号变为频域分析,那么,再复杂的信号也是由许多个不同频率的余弦信号的叠加产生,对于不同频率,对应不同的幅度值。所以,在时域上十分复杂的信号,转到频域中,我们发现它的频率成分十分的简单,对于本题中的AM幅度调制信号,我们知道它的频率成分只包含载频分量,上边带,下边带,将原始信号的频谱搬移到载波的位置。
AM调幅信号是一个周期信号,分析时域的周期信号的频谱时,需要使用的是十分味道的数学变换——傅里叶变换,那么,对于时域的周期信号,对应的频域的变换为傅里叶级数展开,通俗解释就是将一个很复杂的信号展开为n个余弦信号的叠加,而每个余弦信号的系数便是这个信号在该频率点的幅度值,但是,对于这样的周期信号的傅里叶级数展开,利用计算机对其研究并没有实际的物理意义,计算机只处理数字信号。
对于连续的周期信号,既然其傅里叶级数展开没有实际的意义,那么,使用一定的频率对信号进行采样,产生一个人或两个周期的离散时域信号表示原始信号,对于该采样出来的信号,我们就可以使用离散傅里叶变换(DFT)研究其频率分量。
DFT变换是处理离散的信号,该变换将时域和频域都呈现离散的形式,时域的有限长离散信号当作周期信号的主值序列。采用DFT变换可以将信号的频域特性提取出来,但是,对于点数比较少的计算复杂度不高,但是如果数据点较多