关于编程分析AM调幅信号的频谱

本文介绍了如何使用C语言和快速傅里叶变换(FFT)来分析AM调幅信号的频谱。通过傅里叶变换将复杂的时域信号转化为频域分析,探讨了离散傅里叶变换(DFT)和FFT的原理,包括数据的镜像交换处理。文章实现了C语言的FFT程序,并利用gnuplot绘制了AM信号的频谱图,展示了在载频1000Hz及上下边带的幅度特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 环境工具
语言:c语言
作图工具:gnuplot

2. 快速傅里叶变换

对于时域的幅度调制信号,它是一个周期信号,分析其特性时十分复杂,如果把时域的信号变为频域分析,那么,再复杂的信号也是由许多个不同频率的余弦信号的叠加产生,对于不同频率,对应不同的幅度值。所以,在时域上十分复杂的信号,转到频域中,我们发现它的频率成分十分的简单,对于本题中的AM幅度调制信号,我们知道它的频率成分只包含载频分量,上边带,下边带,将原始信号的频谱搬移到载波的位置。

AM调幅信号是一个周期信号,分析时域的周期信号的频谱时,需要使用的是十分味道的数学变换——傅里叶变换,那么,对于时域的周期信号,对应的频域的变换为傅里叶级数展开,通俗解释就是将一个很复杂的信号展开为n个余弦信号的叠加,而每个余弦信号的系数便是这个信号在该频率点的幅度值,但是,对于这样的周期信号的傅里叶级数展开,利用计算机对其研究并没有实际的物理意义,计算机只处理数字信号。
对于连续的周期信号,既然其傅里叶级数展开没有实际的意义,那么,使用一定的频率对信号进行采样,产生一个人或两个周期的离散时域信号表示原始信号,对于该采样出来的信号,我们就可以使用离散傅里叶变换(DFT)研究其频率分量。
DFT变换是处理离散的信号,该变换将时域和频域都呈现离散的形式,时域的有限长离散信号当作周期信号的主值序列。采用DFT变换可以将信号的频域特性提取出来,但是,对于点数比较少的计算复杂度不高,但是如果数据点较多࿰

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值