c语言 北京时间转换utc时间_空间与时间转换

空间和时间之间的转换无非就两种方式即:时间换空间,空间换时间。

当年蒋介石就完成过空间换时间,以大量的土地换取自己喘息的时间。

在实际开发中时间 = 运行时间,空间 = 运行内存,所以空间和时间的转换其实也就是运行时间和内存之间的占比。在时间运行中如何将两者的关系处理好就能提升系统的运行速度。时间换空间就是执行那些复杂的程序的时候需要消耗很大的内存,我们就需要把程序拆分成不同模块执行利用时间来降低内存的消耗,反之亦然。

在程序开发过程中,我们对于数据的处理,会有一些校验。 
       校验分为两种:简单校验和复杂校验。
       对于一些简单的校验,如用户是否存在,密码是否正确等等。这种校验,可以说几乎不耗时的。所以也没必要在这里做优化。 
       对于复杂的校验,需要进行联合查询,通过查询很多次之后,才可以得出 数据的正确性与否。当然这种校验执行会很慢。
       对于程序开发来说,时间复杂度和空间复杂度是可以相互转化的。说通俗一点,就是:对于执行的慢的程序,可以通过消耗内存(即构造新的数据结构)来进行优化。而消耗内存的程序,也可以多消耗时间来降低内存的消耗。 
       前者使用的是最多的。很少有人会为了节省内存而浪费时间。感兴趣的同学,请仔细看完这个例子。看如何是如何消耗内存来提高性能的。如果有不正确的地方,还请指出来。

先举例一个场景。来分别 看一下  正常思路的处理方法和优化过后的处理方法:
       比如说给学生 排课。学生 和 课程 是一个多对多的关系。 

aa3b37ec81826737a4459564fcfbae53.png

按照正常的逻辑 应该有一个关联表来维护 两者之间的关系。 

bb4478e7e168c240c63867ba7a1caa90.png

现在,添加一个约束条件 用于 校验。如:张三 上学期 学过 的课程,在排课的时候不应该再排这种课程。 

848e088c5f97419fd1b40fabc28c21d0.png

 所以需要出现一个约束表(即:历史成绩表)。

ff4813e322c309717c15f94fec3e434a.png

即:学生选课表,需要 学生成绩表作为约束。

处理方式对比

方案一:正常的处理方式:

       当一个学生进行再次选课的时候。需要查询学生选课表看是否已经存在。

即有如下校验:

 
  1. //查询 学生code和课程code分别为 A 和 B的数据是否存在

  2. //list集合中存放 学生选课记录全部的数据

  3. List ListStudentRecord=service.findAll();

  4. //查询数据,看是否已经存在

  5. StudentRecordEntity enSr=ListStudentRecord.find(s=>s.学生Code==A && s.课程Code==B);

  6. If(enSr==null){

  7. //学生没有选该课程

  8. //....

  9. }else{

  10. //学生已经选过该课程

  11. //....

  12. }

对于上面这种代码的写法,非常的简练。而且也非常易懂。 


       首先,假设有5000个学生,100门课程。那么对于学生选课的数据集中,数据量将是5000*100.数据量会是十万级别的数量级。
       在十万条数据中,查询 学生=A 课程=B的 一条记录。执行的效率会很低。因为find方法的查询也就是where 查询,即通过遍历数据集合 来查找。 


       所以,使用上面的代码。在数据量逐渐增长的过程中,程序的执行效率会大幅度下降。 
       (ps:数据量增长,在该例子中并不太适合。例子可能不太恰当。总之,大概就是这个意思。)
方案二:使用内存进行优化效率:
       这种做法,需要消耗内存。或者说把校验的工作向前做(数据的初始化,在部署系统的过程中进行)。即:在页面加载的时候数据只调用提供的public方法进行校验。

 
  1. //学生Code 到 数组索引

  2. Private Dictionary _DicStudentCodeToArrayIndex;

  3. //课程Code 到 数据索引

  4. Private Dictionary _DicCourseCodeToArrayIndex;

  5. //所有学生

  6. List ListStudent=service.findAllStudent();

  7. //所有课程

  8. List ListCourse=service.findAllCourse();

  9. //所有 学生选课记录

  10. List ListStudentRecord=service.finAll();

  11. Private int[,] _ConnStudentRecord=new int[ListStudent.count,ListCourse.count];

  12. //构造 学生、课程的 数组 用于快速查找字典索引

  13. Private void GenerateDic(){

  14. For(int i=0;i

  15. _DicStudentCodeToArrayIndex.Add(ListStudent[i].code,i)

  16. }

  17. For(int i=0;i

  18. _DicCourseCodeToArrayIndex.Add(ListCourse[i].code,i)

  19. }

  20. }

  21. //构造学生选课 匹配的 二维数组。1表示 学生已选该课程

  22. Private void GenerateArray(){

  23. Foreach(StudentRecordEntity sre in ListStudentRecord){

  24. Int x=_DicStudentCodeToArrayIndex[sre.学生Code];

  25. Int y=DicCourseCodeToArrayIndex[sre.课程Code];

  26. ConnStudentRecord[x,y]=1;

  27. }

  28. }

  29. //对外公开的方法:根据学生Code 和课程Code 查询 选课记录是否存在

  30. /// 返回1 表示存在。返回0表示不存在

  31. Public void VerifyRecordByStudentCodeAndCourseCode(String pStudentCode,String pCourseCode){

  32. Int x=_DicStudentCodeToArrayIndex[pStudentCode];

  33. Int y=_DicCourseCodeToArrayIndex[pCourseCode];

  34. Return ConnStudentRecord[x,y];

  35. }

性能分析

分析一下第二种方案的表象。 
       1、方法很多。 
       2、使用的变量很多。
       首先要说一下。该优化的目的,是提高 学生在选课的时候,所出现的卡顿现象(校验数据量大)。
分别对以上两种方案进行分析:


       假设学生为N,课程为M
第一种方案: 
       时间复杂度很容易计算 第一种方案最小为O(NM) 

第二种方案: 
       1、代码多。但是给用户提供的只有一个VerifyRecordByStudentCodeAndCourseCode方法。 
       2、变量多,因为该方案就是要使用内存提高效率的。 
       这个方法执行流程:1、在Dictionary中使用Code找Index 2、使用Index查询数组。
       第一步中,Dictionary中查询是使用的Hash查找算法。时间复杂度为O(lgN) 时间比较快。第二步,时间复杂度为O(1),因为数组 是连续的 使用索引 会直接查找对应的地址。 
       所以,使用第二种方案进行校验,第二种方案时间复杂度为O(lgN+lgM) 

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页