分支限界法旅行售货员问题_回溯法

本文详细介绍了回溯法的原理和应用,特别是通过深度优先搜索策略解决旅行售货员问题。同时,讨论了分支限界法,将其与广度优先搜索相联系。文章涵盖了递归和递推两种回溯法实现方式,并列举了经典问题如0-1背包问题、旅行售货员问题和N皇后问题的解决方案。
摘要由CSDN通过智能技术生成

一. 回溯法 – 深度优先搜素
1. 简单概述
回溯法思路的简单描述是:把问题的解空间转化成了图或者树的结构表示,然后使用深度优先搜索策略进行遍历,遍历的过程中记录和寻找所有可行解或者最优解。
基本思想类同于:

  • 图的深度优先搜索
  • 二叉树的后序遍历

    分支限界法:广度优先搜索
    思想类同于:图的广度优先遍历
    二叉树的层序遍历

    2. 详细描述
    详细的描述则为:
    回溯法按深度优先策略搜索问题的解空间树。首先从根节点出发搜索解空间树,当算法搜索至解空间树的某一节点时,先利用剪枝函数判断该节点是否可行(即能得到问题的解)。如果不可行,则跳过对该节点为根的子树的搜索,逐层向其祖先节点回溯;否则,进入该子树,继续按深度优先策略搜索。
    回溯法的基本行为是搜索,搜索过程使用剪枝函数来为了避免无效的搜索。剪枝函数包括两类:1. 使用约束函数,剪去不满足约束条件的路径;2.使用限界函数,剪去不能得到最优解的路径。
    问题的关键在于如何定义问题的解空间,转化成树(即解空间树)。解空间树分为两种:子集树和排列树。两种在算法结构和思路上大体相同。
    3. 回溯法应用
    当问题是要求满足某种性质(约束条件)的所有解或最优解时,往往使用回溯法。
    它有“通用解题法”之美誉。
    二. 回溯法实现 - 递归和递推(迭代)
    回溯法的实现方法有两种:递归和递推(也称迭代)。一般来说,一个问题两种方法都可以实现,只是在算法效率和设计复杂度上有区别。
    【类比于图深度遍历的递归实现和非递归(递推)实现】
    1. 递归
    思路简单,设计容易,但效率低,其设计范式如下:
//针对N叉树的递归回溯方法
void backtrack (int t)
{
    
	if (t>n) output(x); //叶子节点,输出结果,x是可行解
	else
		for i = 1 to k//当前节点的所有子节点
		{
    
			x[t]=value(i); //每个子节点的值赋值给x
			//满足约束条件和限界条件
			if (constraint(t)&&bound(t)) 
			backtrack(t+1);	//递归下一层
		}
}


2. 递推
算法设计相对复杂,但效率高。

//针对N叉树的迭代回溯方法
void iterativeBacktrack ()
{
    
	int t=1;
	while (t>0) {
    
		if(ExistSubNode(t)) //当前节点的存在子节点
		{
    
			for i = 1 to k  //遍历当前节点的所有子节点
			{
    
				x[t]=value(i);//每个子节点的值赋值给x
				if (constraint(t)&&bound(t))//满足约束条件和限界条件 
				{
    
					//solution表示在节点t处得到了一个解
					if (solution(t)) output(x);//得到问题的一个可行解,输出
					else t++;//没有得到解,继续向下搜索
				}
			}
		}
		else //不存在子节点,返回上一层
		{
    
			t--;
		}
	}
}


三. 子集树和排列树
1. 子集树
所给的问题是从n个元素的集合S中找出满足某种性质的子集时,相应的解空间成为子集树。
如0-1背包问题,从所给重量、价值不同的物品中挑选几个物品放入背包,使得在满足背包不超重的情况下,背包内物品价值最大。它的解空间就是一个典型的子集树。
回溯法搜索子集树的算法范式如下:

void backtrack (int t)
{
    
  if (t>n) output(x);
    else
      for (int i=0;i<=1;i++) {
    
        x[t]=i;
        if (constraint(t)&&bound(t)) backtrack(t+1);
      }
}


2. 排列树
所给的问题是确定n个元素满足某种性质的排列时,相应的解空间就是排列树。
如旅行售货员问题,一个售货员把几个城市旅行一遍,要求走的路程最小。它的解就是几个城市的排列,解空间就是排列树。
回溯法搜索排列树的算法范式如下:

void backtrack (int t)
{
    
  if (t>n) output(x);
    else
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值