即使Python列表的维数不超过一个,但对于numpy附带的数组/矩阵,也需要具有两个或多个索引/切片的表示法。尽管它(有意地)不属于核心库,但它已成为n维数组的事实标准。在
你可以在这里打字>>> import numpy as np
>>> ar = np.array([[1,2],[3,4]])
>>> ar[0,0]
1
>>> ar[:,0]
array([1, 3])
>>> random_array = np.random.random((100,100))
>>> random_array[50:60,30:35]
array([[ 0.8352567 , 0.14901839, 0.2409099 , 0.88278442, 0.84300552],
[ 0.88403713, 0.54964811, 0.83500869, 0.88258427, 0.90273584],
[ 0.00271817, 0.94116153, 0.6282039 , 0.3243262 , 0.71785796],
[ 0.0661821 , 0.99243509, 0.5888741 , 0.04161134, 0.89517395],
[ 0.87419943, 0.14761041, 0.06123542, 0.8139316 , 0.66220133],
[ 0.24710625, 0.02305463, 0.7301232 , 0.11279152, 0.57674316],
[ 0.9893136 , 0.9711931 , 0.12936097, 0.49021876, 0.24834283],
[ 0.48277394, 0.76470469, 0.29348414, 0.43578663, 0.69670601],
[ 0.43401812, 0.14714134, 0.52015761, 0.40088974, 0.25203087],
[ 0.9431969 , 0.04824567, 0.98400652, 0.1129802 , 0.25518842]])
定制类似乎是一个非常特殊的用例——numpy数组确实被大量使用,几乎没有科学的Python库不使用numpy。在