radioml2018数据集_[R - ml] 决策树

本文介绍了使用R语言中的C5.0决策树模型对german.data信用数据集进行分析的过程,包括数据预处理、训练与测试集划分、模型建立与优化,展示了如何通过决策树来预测贷款信用状况。
摘要由CSDN通过智能技术生成

install.packages(c('rpart', 'partykit', 'rpart.plot'))

require(rpart)

require(rpart.plot)

require(partykit)

require(caret)

set.seed(2014)

inTrain = createDataPartition(y = iris$Species, p = 0.8, list = FALSE)

irisTrain = iris[inTrain, ]

irisTest = iris[-inTrain, ]

treemodel

summary(treemodel)

plot(treemodel)

text(treemodel)

prp(treemodel)

prp(treemodel, varlen = 5)

prediction

table(prediction, irisTest$Species)

Case 2

数据准备

credit = read.table('E:/rpath/german.data', header = F, sep = ' ' , stringsAsFactors = FALSE)

str(credit)

dim(credit)

一共1000个样本, 20个feature,最后一个为带预测的变量。

接下来我们需要给每一列加上一个说明

colnames(credit) = c("Status.of.existing.checking.account","Duration.in.month","Credit.history","Purpose","Credit.amount","Savings.account.bonds","Present.employment.since","Installment.rate.in.percentage.of.disposable.income","Personal.status.and.sex","Other.debtors.guarantors","Present.residence.since","Property","Age.in.years","Other.installment.plans.","Housing","Number.of.existing.credits.at.this.bank","Job","Number.of.people.being.liable.to.provide.maintenance.for","Telephone","foreign.worker","Good.Loan") # 最后一个属性命名为Good.Loan 特殊符号全换成.

# 出错 Sys.setlocale('LC_ALL','C')

mapping = list(

"A11" = " ... < 0 DM",

"A12" = "0 <= ... < 200 DM",

"A13" = " ... >= 200 DM salary assignments for at least 1 year",

"A14" = "no checking account",

"A30" = "no credits taken all credits paid back duly",

"A31" = "all credits at this bank paid back duly",

"A32" = "existing credits paid back duly till now",

"A33" = "delay in paying off in the past",

"A34" = "critical account other credits existing not at this bank",

"A40" = "car new",

"A41" = "car used",

"A42" = "furnitureequipment",

"A43" = "radiotelevision",

"A44" = "domestic appliances",

"A45" = "repairs",

"A46" = "education",

"A47" = "vacation - does not exist",

"A48" = "retraining",

"A49" = "business",

"A410" = "others",

"A61" = " ... < 100 DM",

"A62" = " 100 <= ... < 500 DM",

"A63" = " 500 <= ... < 1000 DM",

"A64" = " .. >= 1000 DM",

"A65" = "unknown no savings account",

"A71" = "unemployed",

"A72" = " ... < 1 year",

"A73" = "1 <= ... < 4 years ",

"A74" = "4 <= ... < 7 years",

"A75" = " .. >= 7 years",

"A91" = "male - divorcedseparated",

"A92" = "female - divorcedseparatedmarried",

"A93" = "male - single",

"A94" = "male - marriedwidowed",

"A95" = "female - single",

"A101" = "none",

"A102" = "co-applicant",

"A103" = "guarantor",

"A121" = "real estate",

"A122" = "if not A121 - building society savings agreement life insurance",

"A123" = "if not A121A122 - car or other, not in attribute 6",

"A124" = "unknown no property",

"A141" = "bank",

"A142" = "stores",

"A143" = "none",

"A151" = "rent",

"A152" = "own",

"A153" = "for free",

"A171" = "unemployed unskilled - non-resident",

"A172" = "unskilled - resident",

"A173" = "skilled employee official",

"A174" = "management self-employed highly qualified employee officer",

"A191" = "none",

"A192" = "yes, registered under the customers name",

"A201" = "yes",

"A202" = "no")

for(i in 1:(dim(credit))[2]) {

if(class(credit[, i]) == 'character') {

credit[, i] = as.factor(as.character(mapping[credit[, i]]))

}

}

credit$Good.Loan = as.factor(ifelse(credit$Good.Loan == 1, 'GoodLoan', 'BadLoan'))

看起来点复杂,首先我们建立了一个从缩写到真实意义的映射变量mapping,

下来对应每个为字符的列,我们对列的值进行映射。

最后将Good.Load转换为factor。

接下来对数据进行一个大致的了解:

table(credit$Status.of.existing.checking.account)

table(credit$Savings.account.bonds)

summary(credit$Duration.in.month) # 分布是右偏的,大的数据分布在右边

summary(credit$Credit.amount)

summary(credit$Good.Loan)

以上,完成了对数据的探索

构建训练与测试数据集

使用caret包 Classification and Regression Training 分类和回归训练

require(caret)

set.seed(2014)

inTrain = createDataPartition(y = credit$Good.Loan, p = 0.8, list = FALSE)

credit_train = credit[inTrain, ]

credit_test = credit[-inTrain, ]

prop.table(table(credit_train$Good.Loan))

prop.table(table(credit_test$Good.Loan))

另一种方法

set.seed(2014)

credit_rand = credit[order(runif(1000)), ] # 均匀分布

credit_train = credit_rand[1:900, ]

credit_test = credit_rand[901:1000, ]

prop.table(table(credit_train$Good.Loan))

prop.table(table(credit_test$Good.Loan))

建立模型

我们使用C50包的c5.0算法

install.packages('C50')

require(C50)

credit_model = C5.0(credit_train[-21], credit_train$Good.Loan) # c50 包对字符要求很严格, 要剔除() :这类符号

credit_model

summary(credit_model)

这里的第一个decision, 372/46 代表有372 个样本达到该decision, 有46个错误的归类为 good loan。

整体而言错误率 15.4%,其中88个 bar loan 被归类到 good loan,35个 good loan 被归类为 bad loan。

m = C5.0(train, class, trials = 1, costs = NULL)

p = predict(m, test, type = 'class')

credit_pred = predict(credit_model, credit_test)

require(gmodels)

CrossTable(credit_test$Good.Loan, credit_pred,

prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

dnn = c('actual loan status', 'predicted loan status'))

我们看到错误率 为 (26 + 37)/ 200 = 31.5%。

同时有61.7 % bad loan 我们归类为 good loan, 我们的错误率还只有 30%

模型优化

C5.0 中加入了 adaptive boosting 的支持。

boosting 的详细内容可以参考Wikipedia

credit_boost10 = C5.0(credit_train[-21], credit_train$Good.Loan, trials = 10) # trials 迭代的次数

credit_boost10

credit_pred10 = predict(credit_boost10, credit_test)

CrossTable(credit_test$Good.Loan, credit_pred10,

prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

dnn = c('actual loan status', 'predicted loan status'))

error_cost = matrix(c(0, 1, 5, 0), nrow = 2) # 成本矩阵

rownames(error_cost) = c('GoodLoan', 'BadLoan')

colnames(error_cost) = c('GoodLoan', 'BadLoan')

credit_cost = C5.0(credit_train[-21], credit_train$Good.Loan, costs = error_cost)

credit_cost_pred = predict(credit_cost, credit_test)

CrossTable(credit_test$Good.Loan, credit_cost_pred,

prop.chisq = FALSE, prop.c = FALSE, prop.r = FALSE,

dnn = c('actual loan status', 'predicted loan status'))

有次虽然总的错误率达到 47% , 但是把 bad loan 归类为 good loan的情况却大大减小

只有18.3%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值