可由线性表示且表达式唯一_计算流体力学——从原理到代码(三):非线性方程的黎曼问题与初等波(超长预警)...

本文深入探讨非线性系统的黎曼问题,从线性常数方程组的简单解过渡到非线性系统的复杂解,如激波、接触间断和稀疏波。通过Burgers方程举例,解释了Rankine-Hugoniot条件,并讨论了解的不唯一性和熵条件的重要性。
摘要由CSDN通过智能技术生成

25a43d6323194b1787a5a0fd7f2582a5.png

结论: Riemann 问题的基本解

  1. 线性常数方程组,每个波是一个速度
    行进的间断(
    为线性退化场)
  2. 对非线性系统,波可以是间断(激波,接触间断)和光滑过度(稀疏波)

在Riemann问题的解中,出现的波的类型,关键依赖封闭条件,(例如对Euler方程,我们只考虑状态方程,使得从出现的波仅是激波+接触间断+稀疏波)

激波:两个常数状态

通过单个跳跃间断连续,且满足:

(1)RH条件

(2) 熵条件

接触间断

(1) RH条件

(2) 广义Riemann不变量,即

,且有m-1个独立的首次积分

(3) 并行特征条件

稀疏波

(1) ) 广义Riemann不变量

(2) 特征发散


零、Review for Beginner(读过之前文章的,可以跳至一)

回顾,第一篇文章

里提到的计算流体力学——从原理到代码(一):对流方程的格式与实现里提到的线性对流方程:

其中,A是一个常系数(矩阵)。

我们这里,考虑u只有一维的情况,那么A就是常数。

所有问题都要考虑自变量因变量,所以我们考虑,不同时间t上,给定空间的不同点x上,方程值u的变化。

发现,所有的u沿着x-t平面上的射线保持不变,称之为特征线:

此外

(默认已知内容,不懂的查资料,很多)从流体力学三大守恒(质量、动量、能量)推出基本方程:

这是一个双曲拟线性守恒方程 ,换句话说:

单位体积微元,每时间单位体积里(质量、动量、能量)的变化
,等于体积微元与外界交换的流的变化

第二篇文章里

我们开始接触黎曼问题,一般的流体基本方程的Riemann问题的解的形式,即当初值是有限常数状态,

,这就叫做Riemann问题。

为什么研究分片常数初值的PDE的解这么重要?还是那回事,我们使用离散的算法毕竟原先的连续数学问题,那么,计算机计算的时候,相当每次间断处都在求解一个分段函数初值的PDE,我们怎么相信计算机解的是“好”的,就要好好地研究CFD的Riemann问题?

对于线性对流方程,只有一个变量u的黎曼问题

,
处解不连续,作特征线,特征线上解断了,如图,
特征线左右值恒为ul,ur

abbecf1abadd5b25ee0a52b4b4baa821.png
线性对流方程的黎曼问题,特征线左边恒为uL,右边恒为uR


接着,我们通过双曲性,推得了,比如上一节的最后,我们得到了一般性的流体方程Riemann问题的解:

1b8b26982c6583daf0e362f68582f8fd.gif
线性对流方程,按照特征线线性地传播的波

一、走向非线性

前面我们一直考虑的是线性系统:

其中,A是一个常系数(矩阵)。

现在考虑守恒律的拟线性形式:

它的特征线(即沿着该线解为常数)满足

(证明由定义推一下就可以)

因为

曲线上是常数,所以当然可以积分,得到从
出发的特征线为:
,

如果

是一个标量,那么只要解还是光滑的,特征线一定都是射线。

二、经典例子:Burgers 方程

PDE中大名鼎鼎的 Burgers 方程:

特征线

,但是呢,如果
,特征线就会相交,但是物理量不可能相互穿过而无影响(保持光滑),另一方面,如果
,特征线会发散。我们具体来看

(一) 激波

7e01463980dbcf15db154040def1b6f7.png

于是,我们特别的,考虑他的Riemann问题

,特征线相交与射线:
,在这里形成一个激波。

守恒律告诉我们:

于是,我们得到激波的波速

这个结果可以进一步而被推广到多元的方程组,我们称为Rankine-Hugoniot jump conditions(具体推导见下面第四部分)

84718d42f2c1c3ab2de469e111f0eeff.png

8f6875efb4ae6a63aeed15d1624b46a5.gif
非线性例子:Burgers方程,可以发现在最中间处产生了激波!

691fb9cf7acd3e460c6569a2c22d0b44.png
注意时空平面(x-t)上,u值相同的射线斜率等于u值,这意味着他们之间会相互接触,波会接触,产生了激波——这就是非线性的独特之处

(二)稀疏波

另一方面,如果

,对于黎曼问题

(和前面不同之处在于,x=0左右谁高谁低换了),会在x=0这条射线上,没有任何特征线通过,只有特征线发散出去,意味着没有物理量会通过这里,只会出去。这就是稀疏波,

4fe405d3e58393e6aba61abd2acc1648.png

此时,问题的一个弱解为:

0178ee6e8ee252ed27bc14a55fc57e38.png

但是, 可以验证,下面这个也是一个弱解:

,其中
是任意的,

因此,守恒律的弱解是不唯一的,需要加上额外的条件,以便从众多弱解中,选取出物理意义的解,这个条件被称为熵条件,或者叫做可容许条件

23b6f769183587ada8573e1f8a103815.gif
非线性例子:Burgers方程,的稀疏波例子

5f9224607668c3dcd26abfbe4f32d2e2.png
注意时空平面(x-t)上,u值相同的射线斜率等于u值,这意味着他们之间会相互分散,产生了稀疏波——这就是非线性的独特之处

三、弱解与Rankine-Hugoniot条件

徐政豪:计算流体力学——从原理到代码(四):有限体积法与Godunov Scheme 初步​zhuanlan.zhihu.com
84c654503eefdd6cfcee5f5751ce045b.png

里,我简单的提到了弱解的不唯一性,我们回顾一下:

之前,我们一直研究的是流体守恒方程的微分形式:

上一节,我们讨论了非线性的流体问题,例如,Burgers equation:

处的Riemann问题会产生解的非光滑性。
而非光滑的地方,拟线性PDE则失效了

但是这样的解,可以用积分形式来表示——因为积分形式的方程是流体守恒的更基本的描述(流体基本方程的推导过程,大家可以参考z站上的其他答案)

拟线性双曲守恒律的积分形式:在区域

ab48038908f9a582998c9f1a9879c99a.png

对微分形式重积分,得

(更严格来说,不仅仅要对区域

成立,而是要对任意控制体都成立,大家明白意思就好)

由散度定理,控制体上量的变化,等于时间微元内边缘的流的变化,即

这样的方程的解

被称为
弱解

此外,解的爆破我们介绍一下

在特征线发生相交之前,单值解都可以用特征线的方法给出,如前所述的

当特征线开始相交时,我们就说解爆破(Blow Up)此时解的偏导数

变为无穷大,爆破发生在由
发散出来的特征线
,其中 x0满足:
,且
是最大值的点

下面我们来建立Rankine-Hugoniot间断跳跃条件:

间断线

上, 令
是下面四条曲线构成的闭回路,即在间断线的任意的一点
附近取小邻域:

由守恒律的积分形式:

我们将

拆成四条曲线,分别计算积分,得到:

注意到

因为t是固定的,所以这一项是0

那么,上面的式子可以简化为

数分里的常见思想,现在令

所以

由于

是任意的,所以在间断线
上,

其中

是间断速度,

这样我们就得到了非线性守恒律激波和接触间断处解满足的条件,即Rankine-HugonIot条件

给定

和一个对应
的特征场的速度为
的间断或波,则跨越间断线的RH条件:

举个例子,根据这个关系可以找出线性常系数双曲方程的Riemann问题的解

比如说:

7abf4869dd4b3c26418776a055a846d0.png
线性常系数双曲方程的Riemann问题的解:中间部分的密度和速度记为rho_* , u_*

对于

,特征值

跨越速度为

的1-波的RH条件为:

由此:

同理2-波处,由RH condition:

联立二元方程组,就得到了Riemann问题的中间状态的:


码子码latex太累了……

没讲完的有熵条件,Riemann不变量

感觉写得太细了,大家没什么人想看……

大家了解一下什么是初等波,初等波的一些结论,以及一些定理和术语就好

这一块的东西太PDE了

就这样吧,如果想弄清细节的话,大家可以看Toro的书

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值