matlab ar功率谱估计,AR功率谱估计MatlAB

AR模型的谱估计是现代谱估计的主要内容

AR模型的谱估计是现代谱估计的主要内容。

1.AR 模型的Yule—Walker方程和Levinson-Durbin递推算法:在MATLAB中,函数levinson和aryule都采用 Levinson-Durbin递推算法来求解AR模型的参数a1,a2,……,ap及白噪声序列的方差,只是两者的输入参数不同,它们的格式为:

A=LEVINSON(R,ORDER) A=ARYULE(x,ORDER)

两函数均为定阶ORDER的求解,但是函数levinson的输入参数要求是序列的自相关函数,而函数aryule的输入参数为采样序列。

下面语句说明函数levinson和函数aryule的功能是相同的:

例子:

randn('seed',0)

a=[1 0.1 0.2 0.3 0.4 0.5];

x=impz(1,a,20)+randn(20,1)/20;

r=xcorr(x,'biased');

r(1:length(x)-1)=[];

A=levinson(r,5)

B=aryule(x,5)

2.Burg算法:

格式为:A=ARBURG(x,ORDER); 其中x为有限长序列,参数ORDER用于指定AR

模型的阶数。以上面的例子为例:

randn('seed',0)

a=[1 0.1 0.2 0.3 0.4 0.5];

x=impz(1,a,20)+randn(20,1)/20;

A=arburg(x,5)

MATLABAR模型功率谱估计AR阶次估计的实现-psd_my.rar (最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正) (声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计) (按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE', 'AIC', 'MDL', 'CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。) ………………………………以上省略…………………………………………………………………… 假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下: Y = x; Y(1:n) = []; m = N-n; X = [];% 构造系数矩阵 for i = 1:m     for j = 1:n         X(i,j) = xt(n i-j);     end end beta = inv(X'*X)*X'*Y'; 复制代码 beta即为用最小二乘法估计出的模型参数。 此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。 4.3.3 AR模型阶次的选择及实验设计 文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(Singular Value Decomposition, SVD)定阶法、最小预测定误差阶准则(Final Prediction Error Criterion, FPE)、AIC定阶准则(Akaika’s Information theoretic Criterion, AIC)、MDL定阶准则以及CAT定阶准则。文献[28]中还介绍了一种BIC定阶准则。SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。 以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分): for m = 1:N-1    ……       % 判断是否达到所选定阶准则的要求    if strcmp(criterion,'FPE')        objectfun(m 1) = (N (m 1))/(N-(m 1))*E(m 1);    elseif strcmp(criterion,'AIC')        objectfun(m 1) = N*log(E(m 1)) 2*(m 1);    elseif strcmp(criterion,'MDL')        objectfun(m 1) = N*log(E(m 1)) (m 1)*log(N);    elseif strcmp(criterion,'CAT')        for index = 1:m 1            temp = temp (N-index)/(N*E(index));        end        objectfun(m 1) = 1/N*temp-(N-(m 1))/(N*E(m 1));    end        if objectfun(m 1) >= objectfun(m)        orderpredict = m;        break;    end end 复制代码 orderpredict变量即为使用相应准则预测的AR模型阶次。 (注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion) 登录/注册后可看大图 程序1.JPG (35.14 KB, 下载次数: 20352) 下载附件  保存到相册 2009-8-28 20:54 上传 登录/注册后可看大图 程序2.JPG (51.78 KB, 下载次数: 15377) 下载附件  保存到相册 2009-8-28 20:54 上传
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值