# nlp开放性问题,不能统一使用句子相似度来衡量,模型输出的结果,比如对联问题,
# 不能说人类或者说某人出了上联,而下联的答案是唯一的,所以机器在输出结果上不能是唯一的
# 机器固然会迷惑所以就一般是你想要的结果,和一半不是你想要的结果。
# 遂你的模型单纯从句子的相似度来看的话是不可避免的高不了,但是,语句通顺成都自然是高。
# 在举一个反例 那就是 文本纠错任务,由于一句话的某个字是固定不变的,
# 所以只要足够多的训练集合是完全可以实现纠错功能的,但是你还是不能完全使用句子的相似度。
# 而是将相似度二值(假设一句话只有一个错别字)完全相同就得一分不完全相同就的0分最后加和比上句子总数
# 再比如更加复杂的sum 这个特别的难评估只要是意思一样就可以。针对,nlp 任务的评估你要训练一个nlp 评估模型
nlp任务的评估不可能使用通用方法
于 2022-06-03 10:20:44 首次发布