扩散模型的启发和因果推论之数据增强

🍿*★,°*:.☆欢迎您/$:*.°★* 🍿



正文


从因果中推导一种  数据增强的方法

比如 使用相机采样的时候 

随着相机的移动 

 采样的时间越短采样的

 数据越多  那么说名 

数据量越大 

这样虽然能达到更多数据量的目的但是

如果输入是T1 输出是T2

那么模型学习到的信息是确定性的

故而需要大量的数据 也未必能覆盖到所有的情况 

模型的自我推导能力  薄弱

而如果能够 增加采样时间那么说 中间的不确定性增加  

但是有无法得到  大量的数据 故而要使用 根据结果  推导出 原因

当T2确定的时候 可以推导出m个T1  能够到达 T2

都可以作为输入 就如同扩撒模型一样 之所以扩散模型 

可以成功原因是由于  物质运动  物质波  波动 符合 高斯分布 所以

扩散模型的方法  相当于 一个 全息的数据库 但是 该方法太任意 

确定性不足  故而要将 确定性增加就是使用 T2 中的元素 

排列组合随机打乱 增加和删减 该中有的元素

这样 就如同 一个帽子  在一个固定的 空间移动 不会 变成 苹果 

这样 训练训练出来的模型 确定性高 

简单的实现代码

随机的生成 0-256 之间的 1024 个数字

使用index 的方法 打乱 这些数

使用首位 赋值一部分代码 可以带来重复的利用  或者 改变

从而达到 随机 且不是简单的 本来元素上的打乱

# 正常模型
# 变换随机分布
# T+1 =T2
import numpy as np
data=np.random.randint(0,256,1024)

index=np.random.permutation(data.size)
# 打乱
data=data[index]
# 做一些元素重复
data[-10:]=data[:10]
data=data.reshape(32,32)


if __name__ == '__main__':
    pass

总结

        数据增强的一种手段  可以通过模型来测试   例如已知了label  是一个图片  而后 使用该方法

        来new  多个 输入进行  模型训练  而后  使用  真实的图  会不会估计出 一个图的下一个动作

        值得测试  的一个想法  虽然没什么数据论证  如果不成功  也可以代替 扩散模型的 高斯分布

        这样便能 更加确定性的生成模型  比如 image to image  将输入的图像打乱 增加一点减少一点

        自己的 元素  而后生成的  或许 是这个图的 相关性  极其高的图

        


  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由东方佑原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方佑

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值