java 时间复杂度o 1,时间复杂度为O(1)的LRU算法

LRU,算法在操作缓存中常常被用到,由于其访问频繁,因此缩小LRU时间复杂度是非常必要的,好的LRU算法的实现能够很好的提高系统的稳定性

数据结构中map的访问速度非常快,时间复杂度为O(1),因此在缓存结构中,可以借助map结构,同时由于缓存需要容量满时需要删除操作,并且对于最近被访问的需要重新置于头部,在数据结构中链表能够很好的完成该操作,故缓存结构借助map加链表结构来降低时间复杂度,使得查询、删除、交换的时间复杂度都为O(1),

具体设计如下,map中存放key -value对,查找时可以通过key快速定位到value,

value存放的是node节点,所有的value,都是双向链表中一个node,删除时直接移除

尾部节点即可,为简化操作,链表自带头节点head和尾节点tail

package Inter.other;

/**

* 缓存通用实现接口接口

* Created by lin on 2018/9/19.

*/

public interface Cache{

V get(K key);

void set(K key, V value);

void clear();

}

package Inter.other;

/**

* 键值生成策略接口

* Created by lin on 2018/9/19.

*/

public interface KeyGenerationStrategy{

K generationKey(V value);

}

package Inter.other;

/**

* 链表节点的定义

* Created by lin on 2018/9/16.

*/

public class Node{

V value;

K key;//表示该节点的键;

Node next;

Node prev;

public Node(V value, K key) {

this.value = value;

this.key = key;

}

public Node(Node prev, Node next, V value) {

this.prev = prev;

this.next = next;

this.value = value;

}

public K getKey() {

return this.key;

}

@Override

public String toString() {

return "prev:" + prev.value + "当前节点" + this.value + "next:" + next.value;

}

}

package Inter.other;

/**

* 简单的键值生成

* Created by lin on 2018/9/19.

*/

public class SimpleKeyGenerationStrategyimplements KeyGenerationStrategy{

@Override

public K generationKey(V value) {

return (K) value.toString();

}

}

package Inter.other;

import java.util.HashMap;

import java.util.Map;

/**

* 缓存算法的具体实现

* Created by lin on 2018/9/16.

* 时间复杂度为O(1)的一个缓存

*/

public class LRUCacheimplements Cache{

// private KeyGenerationStrategykeyGenerationStrategy;

//默认容量大小

private static final int DEFAULT_CAPACITY = 8;

/* 缓存容量的大小 */

private int capacity;

/* 缓存已使用的容量 */

private int size;

/* 为了实现快速寻找,这里使用map,查找时间复杂度为O(1)*/

private Map> map = new HashMap<>();

/* 为了实现快速替换,这里使用链表,删除或者加入时间复杂度为O(1)*/

private Nodehead;

private Nodetail;

/**

* 初始化

*

* @param capacity

*/

public LRUCache(int capacity) {

// map = new HashMap<>();

if (capacity <= 0) {

capacity = DEFAULT_CAPACITY;

}

this.capacity = capacity;

this.head = new Node(null, null, null);

this.tail = new Node(head, null, null);

head.next = tail;

}

/**

* 从缓存中获取指定值,没有返回空

*

* @param

* @param * @return

*/

@Override

public V get(K key) {

Nodenode = (Node) map.get(key);

if (node == null) {

return null;

} else {

moveToFirst(node);

return node.value;

}

}

/**

* 指定节点添加到缓存中

*

* @param key value值对应的键

* @param value 存放的值

*/

@Override

public void set(K key, V value) {

Nodenode = new Node(value, key);

//缓存容量未满,不需要淘汰,直接添加到最后一个

if (size <= capacity) {

node.prev = head;

node.next = head.next;

head.next.prev = node;

head.next = node;

map.put(node.key, node);

size++;

} else {//容量已满,淘汰最后一个节点即可

// map.put((K)node.key, node);

Node delNode = tail.prev;

delNode.prev.next = node;

node.prev = delNode.prev;

node.next = tail;

tail.prev = node;

delNode.next = null;

delNode.prev = null;

delNode = null;

map.remove(delNode.key);

}

}

//清空缓存

@Override

public void clear() {

this.head = new Node(null, null, null);

this.tail = new Node(head, null, null);

head.next = tail;

size = 0;

}

/**

* 当节点被访问时需要放置到缓存最前面

*

* @param node

*/

private void moveToFirst(Node node) {

//validationIsSwap();

if (node == head.next) {

return;

}

NodenodePrev = node.prev;

NodenodeNext = node.next;

Node beMoved = head.next;// 头节点的下一个节点

head.next = node;

node.prev = head;

node.next = beMoved;

beMoved.prev = node;

nodePrev.next = nodeNext;

nodeNext.prev = nodePrev;

}

/**

* 确定是否可以交换,如果size小于等于1 则没必要

*

* private void validationIsSwap() {

* if (size <= 1) {

* throw new IllegalArgumentException("缓存容量不大于1,不能进行该操作");

* }

* }

*/

public static void main(String[] args) {

LRUCachelruCache = new LRUCache(20);

KeyGenerationStrategykeyGenerationStrategy = new SimpleKeyGenerationStrategy<>();

String key1 = keyGenerationStrategy.generationKey(1);

String key2 = keyGenerationStrategy.generationKey(2);

String key3 = keyGenerationStrategy.generationKey(3);

lruCache.set(key1, 1);

lruCache.set(key2, 2);

lruCache.set(key3, 3);

System.out.println(lruCache.get(key1)+""); ;

System.out.println(lruCache.get(key2)+""); ;

System.out.println(lruCache.get(key3)+""); ;

System.out.println(lruCache.get(key1)+""); ;

// lruCache.swapAndFirst(node2);

Node head = lruCache.head;

//第一个

head = head.next;

System.out.println(head);

//第二个

head = head.next;

System.out.println(head);

//第三个

head = head.next;

System.out.println(head);

// lruCache.set(node1);

}

private Node getHead() {

return this.head;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值