android jni arm x86,使用houdini(Android模拟器)在基于x86的AVD上运行ARM库

我有一个ARM编译库。我无法访问源代码。我想在我自己的应用程序中使用这个库。该应用程序应该在基于x86的AVD上运行(出于性能原因)。使用houdini(Android模拟器)在基于x86的AVD上运行ARM库

问题是,我找不出如何在使用houdini的x86环境中运行此ARM库。我下载了houdini-libs并将它们复制到/system/lib/ resp。到/system/lib/arm/并试图运行我的apk。

我尝试三种不同的方法,但都失败了:

如果我的ARM-库复制到/lib/armeabi/并与gradle这个标志 splits {

abi {

enable true

reset()

include 'x86', 'armeabi'

universalApk true

}

}

安装通用的编译-apk以Failure [INSTALL_FAILED_NO_MATCHING_ABIS: Failed to extract native libraries, res=-113]失败。

如果我将ARM库复制到/lib/armeabi/并使用universalApk false进行编译,则lib在结果x86-apk中不存在。库调用失败,... couldn't find "libXYZ.so"(这很明显,因为它不存在)。

如果我将ARM库复制到/lib/x86/库调用失败,并且java.lang.UnsatisfiedLinkError: dlopen failed: "/data/app/com.jni.example/lib/x86/libXYZ.so" has unexpected e_machine: 40。机器码40是ARM(这是正确的,图书馆确实是ARM),但我不明白为什么这不是由houdini翻译的。

有什么办法可以在x86仿真器上运行ARM库吗?如何设置houdini?

在此先感谢!

编辑:

一切工作正常,问题是库调用现在失败一个新的错误:

D/dalvikvm: Trying to load lib /data/app-lib/com.jni.example-1/libXYZ.so 0xa4df6228

D/dalvikvm: VFY: replacing opcode 0x62 at 0x0002

I/dalvikvm: DexOpt: unable to optimize static field ref 0x3d6d at 0x10 in Lio/netty/util/internal/logging/Log4JLogger;.debug

D/houdini: [1481] Loading library(version: 3.2.1.43093 RELEASE)... successfully.

D/houdini: [1481] Open Native Library /data/app-lib/com.jni.example-1/libXYZ.so failed.

E/dalvikvm: dlopen("/data/app-lib/com.jni.example-1/libXYZ.so") failed: dlopen failed: "/data/app-lib/com.jni.example-1/libXYZ.so" has unexpected e_machine: 40

W/System.err: java.lang.UnsatisfiedLinkError: dlopen failed: "/data/app-lib/com.jni.example-1/libXYZ.so" has unexpected e_machine: 40

有谁知道如何解决这个问题?

2016-11-11

phlo

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值