我的世界服务器物品分类,我的世界:大型生电服标配,从零开始全物品仓库

原标题:我的世界:大型生电服标配,从零开始全物品仓库

我的世界作为一款现象级沙盒类游戏,一直有各大领域,尤其是近几年大型生电服兴起,国内生电服发展迅速,小伙伴们都想了解大型生电服的标配机器,可以建立属于自己的生电服,但是生电服的标配机器都具有较高的专业化,小伙伴可能并没有多少研究,今天就带着大家来看一下生电服大型标配机器:全物品仓库.

注解1:这里讲的全物品仓库是常规的全物品仓库。

5ceefccc6bd5db28fc4b24b691ac3c95.png

1. 全物品仓库在生存中的实用性:

全物品仓库可以算是一个"大垃圾桶",可以把身上所有物品丢进水道进行自动化的分类打包装箱。

2. 全物品的实装建议:

⑴尽量选址为全服交通中心,方便服务器使用。

⑵建议全服资源统一使用,不然完工全物品也没人用。

⑶尽量施工在Y轴64以下防止怪物幻翼的攻击。

⑷可以保证服务器人员素质。

3ffe1926e40eb685fe6099c4f63fced6.png

3.全物品主体的具体拆分:

全物品仓库如想真正的做到"全物品",是可以拆成多个机器,下面就来讲一讲各个机器功能,以及展示机器完工的配图。

注解2:目前如想实现真正意义上的全物品,则分类附魔书目前只有伪堆叠分类。

首先是通用分类单片,它的作用就是分类我的世界内可以堆叠的物品。

b3152388eef3edaab807cda9bb539a1d.png

上图是可堆叠分类单片完工的成品图。

大批量分类单片:它的作用是分类游戏内大量获得的物品,比如固化机产出的混凝土。

874a8efb4a21deeaec79642ae0241b78.png

上图是大批量分类单片加上双模式存储以及打包机整合的分类单片(照着做就行)。

不可堆叠分类机:指利用物品本身的特性进行分类,比如酿造台内只能放药水,那么在酿造台底下放上漏斗,进入漏斗的就只能是药水了。

27eb39458206d4a14027fe609d64d50a.png

可堆叠不可堆叠分选机:一般安装与分类水池底部,用于分选出可以堆叠的物品和不可以堆叠的物品。

酿造机:我的世界酿造需要手动在酿造台进行酿造,酿造机的作用就是半自动或者自动化酿造药水。

ab62b9484a07e2ef305dc3d4b475072e.png

伪堆叠分类单片:作用主要是分类附魔书,因为附魔书没办法做到自动分类,所以要手动存放自动取出。

1224cd7e8d63a43ce9632764597a4d53.png

上图为伪堆叠分类成品图。

功能组件:上文也说过全物品是一个服务器中心区域的集成性机器,所以全物品可加入便利性机器,如熔炉组,如打包机,如合成站,如小型村民交易所交易5311。

a5cc97bc04351ecea91d294219857312.png

全物品仓库并不是短时间就能凑齐材料并且建造完成,而是需要整个服务器一起努力实现的大型集成化机器,下图为某的网易服务器建造完成的全物品仓库。

27cfeba518de87127a9581f2dd0c46b6.png

以上就是真正意义上的全物品仓库的各个组成部分的讲述了,全物品仓库属于生电服大工程了,并不是很快就能做出来的机器,当然只要做出来实用性就很高,那么最后在这里祝愿各位的存档以及服务器发展迅速,当然也祝愿各位想开生电服的小伙伴可以快速发展,早日研究出自己服务器的原创机器。

-----Limerence返回搜狐,查看更多

责任编辑:

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速成业务流程图和功能关系图;②设计阶段,成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值