二元函数洛必达求极限_活用拉格朗日中值,吊打复杂极限难题!

cc28282d453073b12e9d9a6453cb9125.png

来看一道自带霸王色霸气的三角函数极限难题:

例: 求极限

乍一看,你想到了什么方法?没猜错,你应该想到了泰勒展开或洛必达但如果Kaysen/煜神(148上将)告诉你这道题还能用拉氏中值、和差化积公式玩出花儿来,你有没有兴趣?

(P.S. 注意洛必达此处失效,分子求导当场狗带)

我们先来看看解这道题最基础的泰勒大法:

方法一:泰勒(easy doing,技术创新性★★)

5d3838b20522ad692e5d898354ee541e.png
泰勒最麻烦的点就在于能否保证展开的全面性!

方法二:和差化积+拉氏中值 (魔鬼细节,技术创新性★★★★★)

学长看到

,和差化积啪的一下就蹦出来了,很快啊!

008b4269413ca1505d7918e311707d1c.png
和差化积与拉氏中值擦出的绚丽火花

方法三:拉氏中值一般式(技术创新性★★★)

1c544e24e20216ca592638be236d7dfc.png
拉式中值+放缩,巧解复杂极限

方法四:拉氏中值有限增量式(技术创新性★★★★★)

当题干某部分函数明显能用拉氏中值,但用一般式又看不出什么名堂(精度不够),又懒得用放缩去讨论,不妨跟学长一起试试有限增量式,看看会发生出什么特异的化学反应!

所谓有限增量式,见同济高数书P128页,有如下一段话,不知大家有无品出余韵:

8a6fd51d869b5c89d1edff5f8f5af185.png
很多看过同济7版的同学,有限增量定理有没有激发创造性的解题思路?

87617ba1cabea2245551b6aed23d2fa3.png
有限增量,提高参数精度,出奇制胜!

喜欢看学长讲题,就疯狂点个赞,学长会考虑是否放出一元、多元微积分的解题花招。

P.S. 二元微分的可微、偏导、偏导连续等辩证关系及本质理解见下文:

kaysen:二元微分:连续、可微、可偏导、偏导连续的超强通俗解析!​zhuanlan.zhihu.com
6a6f533c4288b3b41db4b70cacdec296.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值