最近总是需要推公式,总结一下各种极限求解的方法。
这里先说一下总结:洛必达放在最后用,在这之前先用其他的方法将式子化简,化简完之后代入极限点如果还满足使用洛必达的条件
,就使用洛必达法则,当然化简代入极限点如果可以直接计算出来一个确定的数就直接得出来结果了。
一、以下所有方法使用之前的一个步骤
直接在函数中代入极限点,如果可以直接求出来一个具体值(非
形式的值),这个具体值就是函数极限,否则作为判断采用其他哪种化简方法的依据。举例如下:
直接代入x = 3是一个具体的非的数,因此求极限结果就是30
二、
型
可以使用洛必达法则,但是使用之前可以先用下面的方法化简
- 找到分子分母中所有的
项
- 找到
项的指数
- 分别只保留分子分母中各自指数最大的项
举例如下
- 找到找到分子分母中所有的
项
- 找到
项的指数
分子上面分别是1、1/2、1,分母上面分别是1、1/2
- 分别只保留分子分母中各自指数最大的项
最终得到化简结果
三、
型
同样可使用洛必达法则,但是使用之前可以先用以下方法化简(等价无穷小替换)
当满足
时,以下几种转换时存在的
举例如下:
四、洛必达法则(
型)
方法:分别对分子和分母求导,直到可以直接代入计算结果。举例如下:
上述表达式用之前的化简方法都无法化简,所以采用洛必达法则对分子分母同时求导之后再代入求极限。
五、
型
转换成
型,具体转换成哪种根据公式中哪一部分更简单,0的更简单则
,反之亦然。举例如下:
六、求底数指数都有x的极限
求此类极限,需要直到以下两个规则
举例如下
七、函数的左右极限及需要分左右极限求解的情况分类
有以下3类函数求极限时必须要分左右极限分别求解
- 分类函数,求其在分段点处的极限
-
且存在使的分母为0,求的极限
-
且存在使得的分母为0,求的极限
当且仅当左极限=右极限且部不为
,
存在极限
举例如下:
求