查看源码区别:
#dumps源码
def dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None,separators=None,default=None, sort_keys=False, **kw):
"""Serialize ``obj`` to a JSON formatted ``str``.
# 序列号 “obj” 数据类型 转换为 JSON格式的字符串"""
#dump源码
def dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True, cls=None, indent=None, separators=None,default=None, sort_keys=False, **kw):"""Serialize ``obj`` as a JSON formatted stream to ``fp`` (a``.write()``-supporting file-like object).
# 有两个动作,一个动作是将”obj“转换为JSON格式的字符串,还有一个动作是将字符串写入到文件中,也就是说文件描述符fp是必须要的参数"""
#loads源码
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):"""Deserialize ``s`` (a ``str`` instance containing a JSON document) to a Python object.
# 将包含str类型的JSON文档反序列化为一个python对象"""
#load源码
def load(fp, cls=None, object_hook=None, parse_float=None, parse_int=None, parse_constant=None, object_pairs_hook=None, **kw):"""Deserialize ``fp`` (a ``.read()``-supporting file-like object containing a JSON document) to a Python object.
# 将一个包含JSON格式数据的可读文件饭序列化为一个python对象"""
代码演示示例:
json.dumps():Python 数据类型转换为 JSON 对象
1 importjson2
3 json.dumps([]) #dumps可以格式化所有的基本数据类型为字符串
4 #'[]'
5
6 json.dumps(1) #数字
7 #'1'
8
9 json.dumps('1') #字符串
10 #'"1"'
11
12 dict = {"name":"Tom", "age":23}13 json.dumps(dict) #字典
14 #'{"name": "Tom", "age": 23}'
json.dump():写入 JSON 数据
1 a = {"name":"Tom", "age":23}2 with open("test.json", "w", encoding='utf-8') as f:
3 json.dump(a,f,indent=4) #和f.write(json.dumps(a, indent=4))效果一样;indent格式化保存字典,默认为None,小于0为零个空格
json.loads():将 JSON 对象转换为 Python 字典
1 json.loads('{"name":"Tom", "age":23}')2 #{'age': 23, 'name': 'Tom'}
json.load():读取数据
1 with open('data.json', 'r') as f:2 data = json.load(f) #和 json.loads(f.read())效果相同
Python 编码为 JSON 类型转换对应表:
PythonJSON
dict
object
list, tuple
array
str
string
int, float, int- & float-derived Enums
number
True
true
False
false
None
null
JSON 解码为 Python 类型转换对应表:
JSONPython
object
dict
array
list
string
str
number (int)
int
number (real)
float
true
True
false
False
null
None
pickle 模块:
json模块和picle模块都有 dumps、dump、loads、load四种方法,而且用法一样。不用的是json模块序列化出来的是通用格式,其它编程语言都认识,就是普通的字符串,而picle模块序列化出来的只有python可以认识,其他编程语言不认识的,表现为乱码。不过picle可以序列化函数,但是其他文件想用该函数,在该文件中需要有该文件的定义(定义和参数必须相同,内容可以不同)。
对象序列化和反序列化(钝化和活化) 。序列化(钝化):内存中的对象如果想要被执行存储起来,可通过序列化机制(将对象碾碎,变为散装数据\二进制数据),持久存储到文件的某个位置;反序列化(活化):将文件中的散装对象,反序列化到程序中,还原成为一个对象实体
pickle模块的介绍:(就是用来序列化和反序列化的)
函数:
1).pickle.dump(obj, fr):将obj对象序列化到文件中(取决于fr中的path) # 没有返回值
2).pickle.load(fw):将fw(path中的数据)加载到程序,以对象返回 # 有返回值
【注意】:文件对象不要忘记关闭!!!
使用pickle模块演示对象序列化和反序列操作:
1 importpickle2
3 classPerson:4 def __init__(self,name,age,sex):5 self.name =name6 self.age =age7 self.sex =sex8 def __str__(self):9 return 'name:%s,age:%s,sex:%s' %(self.name,self.age,self.sex)10
11 #实例化Person对象
12 p = Person('貂蝉',18,'女',162.0,84,'靓丽')13
14 fw = open(r'person.txt','wb') #创建一个文件person.txt,打开方式wb
15 #对象序列化操作:将程序中的对象p序列化到person.txt文件中保存起来
16 pickle.dump(p,fw)17 fw.close()18
19 fr = open(r'person.txt','rb') #打开文件person.txt
20 #对象反序列化操作:将person.txt中的二进制数据反序列化到程序中,还原成为一个Person对象
21 p1 =pickle.load(fr)22 print(p1,type(p1))23 fr.close()
演示容器对象的序列化和反序列化操作:
1 #有4个Person对象,我们可以先将它们存入到list中,然后将此list对象序列化到某一个文件中,之后再将其反序列化到程序,还原得到一个list对象
2 per1 = Person('貂蝉',18,'女',162.0,84,'靓丽')3 per2 = Person('西施',16,'女',160.0,80,'柔弱')4 per3 = Person('昭君',19,'女',165.0,88,'清纯')5 per4 = Person('环环',23,'女',170.0,130,'肥美')6 lt =[]7 lt.append(per1)8 lt.append(per2)9 lt.append(per3)10 lt.append(per4)11
12 #将lt对象序列化到文件persons.txt中
13 fw = open(r'persons.txt','wb')14 pickle.dump(lt,fw)15 fw.close()16
17 #将persons.txt中的二进制数据反序列化到程序中
18 fr = open(r'persons.txt','rb')19 lt1 =pickle.load(fr)20 fr.close()21
22 print(lt1) # 因为放进去的是对象,所以只能看到四个对象,看不到内容
23 #循环遍历lt1,即可查看
24 for i inlt1:25 print(i)
【总结】:
1. json序列化方法: dumps:无文件操作 dump:序列化+写入文件
2. json反序列化方法: loads:无文件操作 load: 读文件+反序列化