两个向量的夹角公式_【数学第10篇】:平面向量

本文详细介绍了平面向量的概念,包括向量的表示、模、夹角和坐标表示。讨论了向量的加减法、数乘运算及数量积,解释了向量平行与垂直的条件,并提供了相应的坐标证明方法。重点讲述了向量夹角的计算公式及其几何意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.平面向量

1.向量表示

⑴.数量

有大小,无方向的量叫数量。(物理中叫标量)

⑵.向量

有大小,也有方向的量叫做向量。(物理中叫矢量)

⑶.向量表示

有起点,有终点的线段叫做有向线段。有向线段有起点,方向,大小三要素,记做23f7054c742ba0763a51a18ed8ed05c8.png,经常用小写字母代替,例如向量a。

向量就用有向线段表示,向量大小叫做向量的模,记做丨23f7054c742ba0763a51a18ed8ed05c8.png丨,向量方向就是有向线段方向;大小为零的向量叫做零向量,记做0;大小为1的向量叫做单位向量。

493a0eb20ff0f837bbeedf365893fd0f.png

2.向量关系和向量夹角

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值