一阶微分方程的物理意义_遐思:线性微分方程通解的本质

本文探讨了一阶线性微分方程通解的线性空间概念,通过广义向量与常数的关系,揭示了微分方程解的结构。文章指出,微分方程的初值问题可以通过线性变换在高维空间中直观理解,每个解可由一组线性无关的特解线性组合表示,从而提供了理解微分方程通解本质的新视角。
摘要由CSDN通过智能技术生成

653a3b680011740a2370a3ae4b96273e.png

引用一下同济大学数学系编著的《高等数学》中对n阶齐次线性方程通解的描述

如果
是n阶齐次线性方程
的n个线性无关的解,那么,此方程的通解为
,其中
为任意常数

3Blue1Brown启发我们,如果一个表达式包含

, 那么在其中某处一定隐藏着一个圆

同样,当谈到线性相关,我们也会自然而然地产生疑问,到哪里去寻找“向量”

根据小学中学学习方程、函数的经验,我们都会有一种很正常的认知

"
是方程的'主角',所有的Constant都是重要性不及它们的参数"

拥有这样的想法,以至于我在学习时产生了许多疑问

越往深入,就越容易迷失在错综复杂的思考迷宫中

例如这样一个问题:"为什么

被称为一阶
齐次线性方程,齐次体现在哪?"

如果我们以另一种角度看待微分方程及其通解,我们会发现一个美妙的线性空间

里面的主角,就是被我们称为“任意常数”的

,于是一切问题也就迎刃而解了

广义向量与线性空间

感谢提醒,原文这里的逻辑推理有点问题,于是做一点修改 Updated 2019.03.09

如果给定n元组

表示
的0...n-1阶导数在某一点
的初值

其实初值也就对应了常数项

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值