![653a3b680011740a2370a3ae4b96273e.png](https://i-blog.csdnimg.cn/blog_migrate/210f6a7c1094d9fe64630ffef8285d7f.jpeg)
引用一下同济大学数学系编著的《高等数学》中对n阶齐次线性方程通解的描述
如果是n阶齐次线性方程
的n个线性无关的解,那么,此方程的通解为
,其中
为任意常数
3Blue1Brown启发我们,如果一个表达式包含
同样,当谈到线性相关,我们也会自然而然地产生疑问,到哪里去寻找“向量”?
根据小学中学学习方程、函数的经验,我们都会有一种很正常的认知
"与
是方程的'主角',所有的Constant都是重要性不及它们的参数"![]()
拥有这样的想法,以至于我在学习时产生了许多疑问
越往深入,就越容易迷失在错综复杂的思考迷宫中
例如这样一个问题:"为什么
如果我们以另一种角度看待微分方程及其通解,我们会发现一个美妙的线性空间
里面的主角,就是被我们称为“任意常数”的
广义向量与线性空间
感谢提醒,原文这里的逻辑推理有点问题,于是做一点修改 Updated 2019.03.09
如果给定n元组
其实初值也就对应了常数项