中学考试研究
厂‘ 一一
一乳竺竺竺
忽祝 特例 引 止的 失误
王 祥 林
江苏省苏州 市电视中等 专业学校
,
,
例 “ “ 是怎样的数
一
了 呢
错解 “ ’是正数
, 一 之 是负数
,
剖析 忽视零的特例 正确答案为 扩
为非负数
, 一 落 为非正数
例 解不等式
、
以 、 一 “ 二 一 之
错解
‘ ,
刹析 忽视特例 一 并 正确答案为 、
且 华
时
,
走之一 二
,
故只能取
例 为何值时
,
二次方程 “犷 十 二
有两个不等实根
错解 由 △二 一 “
二 一 ,
有 一
。 一
里
剖析 在 。 冬中应 去掉 。
,
所 以
,
解答应
例
值
错解
如果对
一
竺二 兰 一
,一 土 一 、
,
求 为 。 二且
。 、
汀丫
“ 户
由原式
,
十 之 二
十 了
‘
逮
一
二
, ,
如
,
例 解方程
一 二
乡
错解 “ 一 , 二
,
长
有
十 得
十 ”幼 “ 十 夕
、 幼
‘
二
剖析 式 中 ,
一
十 十 并 。
,
十 二
① 十 并 时
, 二
八十
而忽视特例
十 十 二 时
, 二 一 ,
一
攀士
一
认
二 一
一 十
二 艺士三 二
例 已知正 比例函数
二 一 无 二‘一“
十
试确定 的值
错解 由 一 二
,
有
天 一 十 二
· ’ · , “
,
刹析 忽视条件 一
一
十 笋
,
当 二
勺 ‘
,
知
八 一 时
, 二
一 时
, 二
② 二 时
, ,
方程无解
剖析 上面的解法仅对整式方程加以 讨论
,
忽略了分式方程的特点
若 。· 。
,
则 丈 一击一
,
使广
二
砚
义
·
故正解如下
当 半 一
,
共 时
,
方 程有 唯 一解 二 二
十
’
① 一
,
祥 时
, 二 为正解
② 一 时
, 二 为负解
当 二 时
,
方程无解