matlab梯形弦长公式,弦长公式证明及应用详解

本文详细介绍了弦长公式的证明及其在直线与圆锥曲线交点弦长计算中的应用。通过韦达定理和直线与圆锥曲线的方程联立,简化了求解过程,并给出了多个例题和练习,涵盖了椭圆、双曲线和抛物线的情况。此外,还讨论了特殊情形,如直线经过抛物线焦点时的弦长公式。文章最后提出了一些相关问题供读者练习。
摘要由CSDN通过智能技术生成

弦长公式证明及应用详解

公式为: |AB|

和:|AB|=

作用:应用弦长公式很方便,它所解决的问题是求直线与所有圆锥曲线所交弦的弦长,因为直线的斜率往往是已知的,这样再知道两个交点的横坐标或者纵坐标就可以直接利用公式求出来,如果不知道横纵坐标也可以直接把直线和圆锥曲线联立方程组,进而转化成一元二次方程利用韦达定理不用解方程代入公式直接求出弦长

公式证明:

证法一:

若直线与圆锥曲线相交与、两点,则

弦长

其实用三角函数来证明也很简单 方法如下

证法二:

又因为:所以

同理:

|AB|=

推导方法如下:

;

又因为:

所以:|AB|=

特殊的,在如果直线AB经过抛物线的焦点,则|AB|=2P

例题1:已知直线与双曲线交于A、B两点,求AB的弦长

解:设

由得得

则有 得,

练习1:已知椭圆方程为与直线方程相交于A、B两点,求AB的弦长

练习2:设抛物线截直线所得的弦长长为,求的值

分析:联立直线与抛物线的方程,化简,根据根与系数的关系,求弦长

解:设

联立方程得

解: 设

联立方程:得

例题2:已知抛物线上存在关于直线对称相异的两点A、B,求弦长

分析:A、B两点关于直线对称,则直线的斜率与已知直线斜率的积为(根据直线垂直斜率之积是-1)且的中点在已知直线上

解:关于对称

设直线的方程为 ,

联立方程 化简得

中点在直线上

小结:在求直线与圆锥曲线相交的弦长时一般采用韦达定理设而不求的方法,在求解过程中一般采取步骤为:设点联立方程消元韦达定理弦长公式

作业:

(1) 过抛物线的焦点,作倾斜角为的直线交抛物线于A,B两点,且,求的值

(2) 已知椭圆方程及点,过左焦点与的直线交椭圆于、两点,为椭圆的右焦点,求的面积。

弦长公式的应用

1. 弦长问题

例1. 已知点动点C到A、B两点的距离之差的绝对值为2,点C的轨迹与直线y=x-2交于D、E两点,求线段DE的长。

解:设点

根据双曲线的定义,可知点C的轨迹是双曲线

故点C的轨迹方程是

因为,所以直线与双曲线有两个交点。

2. 求曲线的方程

例2. 已知点,抛物线C的顶点在原点,焦点在x轴正半轴上,直线与抛物线C交于两点,若成等比数列,求抛物线C的方程。

解:设抛物线

显然点A在直线上,

所以

由图1,知

图1

故抛物线C的方程为。

例3. 已知F是定点,是定直线,点F到直线的距离为,点M在直线上滑动,动点N在MF延长线上,且满足,求动点N的轨迹方程。

解:如图2所示,以点F为原点,过点F垂直于的直线为x轴建立直角坐标系。

图2

由于

根据公式,得

平方整理,得点N的轨迹方程为

.

3. 范围问题

例4. 过椭圆的左焦点F且倾斜角为45的直线与椭圆及其准线的交点从左至右依次为A、B、C、D,记,求的取值范围。

图3

解:由条件,知直线,

其中,则

练习:

设双曲线的右顶点为A,P是双曲线上的一个动点(异于顶点)。从A引双曲线的两条渐近线的平行线与直线OP分别交于Q和R两点。

图4

(1)证明无论P点在什么位置,总有(O为坐标原点);

(2)的取值范围。

(答案:)

展开阅读全文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值