背景简介
探索性数据分析(EDA)是数据分析流程中一个至关重要的步骤,它涉及对数据集结构、变量分布以及变量间关系的初步探索。在本章中,作者通过一个案例研究,即比较美国东西部地区的臭氧水平,来阐述EDA的具体应用。案例详细说明了如何通过数据可视化和预期设定来确定数据集是否能够回答研究问题,并引导读者了解EDA在实践中的具体操作和重要性。
探索性数据分析
EDA是分析数据的首要步骤,它包括对数据集结构的检查、对变量分布的检验以及对变量间关系的考察。EDA最常用的工具是数据可视化,这是因为图形展示可以迅速地传达信息,并且人们容易在图形中识别出模式。
EDA的目标
EDA有三个主要目标:
- 确定数据集是否有问题。
- 判断研究问题是否能由现有数据回答。
- 初步勾勒出研究问题的答案。
EDA的步骤
作者提供了一个EDA的清单,列出了进行EDA时需要遵循的步骤:
- 明确问题
- 读取数据
- 检查数据包
- 查看数据的首尾
- 检查数据量
- 用外部数据源验证
- 制作图表
- 尝试简单解决方案
- 跟进
数据可视化与预期设定
EDA中,数据可视化扮演着至关重要的角色,因为它能快速地揭示数据中的信息,并帮助我们识别潜在的模式。同时,数据分析师需要对数据集有合理的预期,这样才能在数据不符合预期时及时调整研究方向或更换数据集。
预期设定的重要性
在开始EDA之前,分析师需要设定对数据集的预期。如果数据集的内容和结构与预期不符,分析师需要回过头来判断是预期错误还是数据有问题。合理设定预期有助于减少分析过程中的不确定性,提高分析效率。
数据可视化案例
案例研究中使用了2014年美国每小时臭氧水平的数据集,通过盒形图展示了美国东西部地区的臭氧分布情况。通过这种方式,分析师可以直观地比较不同地区的臭氧水平,并判断是否能够回答研究问题。
实践中的EDA
在实践EDA的过程中,分析师可能需要使用R或其他统计软件。本章的案例使用了R语言,并简要介绍了R的readr包用于快速读取CSV文件数据。案例还展示了如何使用str()函数检查数据框的结构,确保数据类型被正确地识别和处理。
总结与启发
探索性数据分析是数据分析不可或缺的一部分,它帮助我们理解数据集的结构、内容和变量间的关系。通过合理的预期设定和数据可视化,我们可以有效地识别数据问题并指导后续分析的方向。本章的案例研究为我们提供了一个实际操作的模板,说明了如何将理论应用于实践,从而更好地回答研究问题。
在结束本章内容的讨论时,我们应当认识到,EDA不仅是一种技术,更是一种思维模式。它要求分析师在数据分析过程中保持好奇心和批判性思维,不断地提出问题、检验假设,并在必要时调整预期或方法。通过这种方式,EDA可以帮助我们更接近于数据的真实面貌,为后续的数据分析打下坚实的基础。