spss26没有典型相关性分析_【spss典型相关分析】数学建模__SPSS_典型相关分析

典型相关分析

在对经济问题的研究和管理研究中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关性。典型相关分析就是测度两组变量之间相关程度的一种多元统计方法。

典型相关分析计算步骤

(一)根据分析目的建立原始矩阵 原始数据矩阵

?x11?x21

?

????xn1

x12x2xn2

?x1p?x2p?

?xnp

y11y21yn1

y12y22yn2

y1q??y2q??

??

?

?ynq???

(二)对原始数据进行标准化变化并计算相关系数矩阵

?R11

R = ?

?R21R12?

R22??

?为第一组变量其中R11,R22分别为第一组变量和第二组变量的相关系数阵,R12= R21

和第二组变量的相关系数

(三)求典型相关系数和典型变量

?1?1?1?1

计算矩阵A?R11R12R22R21以及矩阵B?R22R21R11R12的特征值和特征向量,分

别得典型相关系数和典型变量。

(四)检验各典型相关系数的显著性

第五节 利用SPSS进行典型相关分析

第一步,录入原始数据,如下表:X1 X2 X3 X4 X5

分别代表多孩率、综合节育率、初中及以上受教育程度的人口比例、人均国民收入和城镇人口比例。

第二步,调用CANCORR程序。

1、点击“Files→New→Syntax”打开如下对话框。

2、输入调用命令程序及定义典型相关分析变量组的命令。如图

输入时要注意“Canonical

correlation.sps”程序所在的根目录,注意变量组的格式和空格。

第三步,执行程序。用光标选择这些命令,使其图黑,再点击运行键有典型相关分析结果。 ,即可得到所

输出结果

1

输出结果

2

主要结果的解释:

第一组变量相关系数

Correlations for Set-1

X1 X2

X1 1.0000 -.7610

X2 -.7610 1.0000

第二组变量相关系数

Correlations for Set-2

X3 X4 X5

X3 1.0000 .7712 .8488

X4 .7712 1.0000 .8777

X5 .8488 .8777 1.0000

第一组与第二组变量之间的相关系数

Correlations Between Set-1 and Set-2 X3

X4 X5

X1 -.5418 -.4528 -.4534

X2 .2929 .2528 .2447

典型相关系数

Canonical Correlations

1 .578

2 .025

维度递减检验结果(降维检验)

Test that remaining correlations are

zero: Wilk's Chi-SQ DF Sig. 1 .666 10.584 6.000 .102 2 .999 .017

2.000 .992

标准化典型系数—第一组

Standardized Canonical Coefficients for

Set-1 1 2

X1 -1.319 .797

X2 -.486 1.463

粗系数—第一组(没有标准化的,作者注) Raw Canonical

Coefficients for Set-1 1 2

X1 -.131 .079

X2 -.091 .275

_

标准化典型系数—第二组

Standardized Canonical Coefficients for

Set-2

1 2

X3 .997 -.261

X4 .292 2.075

X5 -.274 -1.743

粗系数—第二组(没有标准化的,作者注)

Raw Canonical Coefficients for

Set-2

1 2

X3 .086 -.023

X4 .000 .002

X5 -.017 -.107

典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第一组

Canonical Loadings for Set-1

1 2

X1 -.949 -.316

X2 .517 .856

交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第一组原始变量

Cross Loadings for Set-1

1 2

X1 -.548 -.008

X2 .299 .022

典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第二组

Canonical Loadings for Set-2

1 2

X3 .990 -.140

X4 .821 .344

X5 .829 -.143

交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第二组原始变量

Cross Loadings for Set-2

1 2

X3 .572 -.004

X4 .474 .009

X5 .479 -.004

Redundancy Analysis:(冗余分析)

(第一组原始变量总方差中由本组变式代表的比例)

Proportion of Variance of Set-1

Explained by Its Own Can. Var. Prop Var

CV1-1 .584

CV1-2 .416

(第一组原始变量总方差中由第二组的变式所解释的比例)

Proportion of Variance of Set-1

Explained by Opposite Can.Var. Prop Var

CV2-1 .195

CV2-2 .000

(第二组原始变量总方差中由本组变式代表的比例)

Proportion of Variance of Set-2

Explained by Its Own Can. Var. Prop Var

CV2-1 .780

CV2-2 .053

(第二组原始变量总方差中由第一组的变式所解释的比例)

Proportion of Variance of Set-2

Explained by Opposite Can. Var. Prop Var

CV1-1 .261

CV1-2 .000

------ END MATRIX -----

另外,在数据表中还输出了以下结果:

s1_cv001:第一组的第一个典型变量;

s2_cv001:第二组的第一个典型变量;

s1_cv002:第一组的第二个典型变量;

s2_cv002:第二组的第二个典型变量;

相关资源:SPSS典型相关分析
已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页