在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
import java.util.Scanner;
public class Main {
static int n,k,ans;
static int[][] map;
static boolean[] vis;
static void dfs(int row,int idx) {//row行,已经放了idx个
if(idx == k) {ans++;return;}
for(int i = row;i < n;i++) //行
for(int j = 0;j < n;j++) //列
if(map[i][j] == 0 && !vis[j]) {
vis[j] = true;
dfs(i + 1,idx + 1);
vis[j] = false;
}
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
while(cin.hasNext()) {
ans = 0;
n = cin.nextInt();
k = cin.nextInt();
if(n == -1 && k == -1)
break;
String tmp;
map = new int[n][n];
vis = new boolean[n];
for(int i = 0;i < n;i++) {
tmp = cin.next();
for(int j = 0;j < n;j++)
if(tmp.charAt(j) == '#')
map[i][j] = 0;
else
map[i][j] = 1;
}
dfs(0,0);
System.out.println(ans);
}
}
}