老看到有人证明:
0.999...=1-0.000...1
0.000...1≠0,
所以0.999...≠1.
但是事实上,
0.000...1=0 !!!
先介绍一个“普世价值”观O(∩_∩)O:
0.aaa...bccc...defg...=0.aaa...
即
无限小数0.aaa...bccc...defg...只有第1个循环的数字有意义,第1个循环后的任何位数是没有意义的。
所以数学中的无限循环小数只存在一个循环。理论上,数学里不存在0.aaa...bccc...defg...,这个数字只存在于意淫之中。
打个比方来说,小明的爸爸持续不断地给小明存钱,一共存了200万。30万给了小明支付上学费用,但是另170万直到宇宙灭亡也只是小明爸爸一个人知道的秘密。其他人包括小明没人知道这件事。那么对小明来说,老爸等于只给他存了30万!!!
0.aaa...bccc...defg...相当于那200万,一串a相当于30万,后面的bc...defg...相当于另外那170万。
对于小明来说,那170万等于没有。但对于其他人来说未必,最起码对银行来说,核算的时候会发现有170万货币不知去向。
同样,0.aaa...bccc...defg...和0.aaa...也只是“数学意义上”相等。如果你把二者看成一串符号,那它们肯定是不同的。
所以,这里的“相等”需要强调是“在数学意义上”。
那么,0.aaa...bccc...defg...和0.aaa...“数学意义上”相等以为着什么呢?意味着:
如果一个数学运算包含0.aaa...bccc...defg...,那么用0.aaa...代替0.aaa...bccc...defg...后运算结果不变。
严格的证明估计国关没人看得懂。简单摆摆道理,死磕就继续死磕吧。
以0.999...为例,下面简单举例证明:
任何包含0.999...的算式,将0.999...用1代替后结果不变。
1.加法。
0.999...+0.999...=1.999...8
(1.999...8这种写法是为了方便向大家解释,其实这个数就是1.999...)
比较1.999...8和1.999...,可以下个结论:
1.999...8和1.999...在任何一位上的数字都相等!!!
你可以随便提哪一位,比如小数点后1位?后1万位?1万亿位?1亿亿亿亿亿亿亿亿亿亿...位,都是9.
两者个位都是1。既然两个数在各个位上都相等,你说两个数字相不相等?
1.999...8的8“在数学运算”的时候永远起不到作用,只有你把1.999...8看做一串字符的时候,即从“语文意义”上讲,1.999...8的8才起到作用,表明1.999...8和1.999...的区别。
0.999...+0.999...=1.999...8=1.999...=0.999...+1
还可以扩展,不光是0.999...,任何1个数+0.999...等于+1。
2.乘法。
把0.999...乘以2,和加法就一样了。
3.乘方。
0.9平方=0.81,0.99平方=0.9801,0.999平方=0.998001,...
0.(n个9)平方=0.(n-1个9)8(n-1个0)1。
若0.999...平方=A,那么因为0.999...≤1,所以A≤1.
但A的小数点后任何一位都是9!!!小数点后1位?后1万位?1万亿位?1亿亿亿亿亿亿亿亿亿亿...位,都是9.
即A=0.999...,0.999...平方=0.999...。
很好玩吧?结合我们前面的规律,
0.999...平方=0.999...8000...1,能看出
所谓的0.999...8000...1=0.999...!!!
一个数的平方是它自身,这个数只能是0或1.
显然0.999...≠0,因此0.999...=1.
最后说下0.000...1,这个数的任何一位都是0,小数点后1位?后1万位?1万亿位?1亿亿亿亿亿亿亿亿亿亿...位,都是0.一个数任何一位都是0,按照数字0的意义,这个数就是0.
当数学遇到“无限”这个概念的时候,会发生很有意思的事情。就比如上面说的,
0.(n个9)平方=0.(n-1个9)8(n-1个0)1
但当n是“无限大”的时候,结果后面的80...1没了!!!!(这个结果的小数点后任何一位都是9,找不出任何一位是8、0或者1)
如果大家真有兴趣严格证明,大学本科数学专业有门课叫《数学分析》,学完基本就会证明了。
如果没这个毅力学,就乖乖接受现实吧,别在考虑什么证明了,白浪费自己时间。
人打赏
0人 点赞
主帖获得的天涯分:0
举报 |
楼主
|
楼主发言:11次 发图:0张 | 添加到话题 |