DeepSeekV3:写代码很强了

部署运行你感兴趣的模型镜像

以前,我是不信AI能最先替代程序员的。

DeepSeek的热度虽然在降,但是能力在悄摸的迭代。

在今年2月中旬测试DeepSeekR1的时候,虽然被它的文本处理能力惊艳到,但是当时吐槽过几句它的编程水平。

写个简单的五子棋游戏。

扭扭捏捏的200行代码,还时不时无法正常运行,历经多轮优化之后,是可以做出来,不过游戏的算法又太差,毫无游戏体验。

还是写五子棋的需求,在DeepSeekV3版本中有了很大的进步。

提示词:使用HTML前端语言,写一款五子棋游戏,用户执黑子先手,电脑执白子后手,一方获胜后结束,游戏的算法逻辑需要尽量精妙,页面可以简约,需要一个重置和关闭的按钮。

写的程序包括注释有500行左右,打开Html预览页面,增强了很多视觉上的质感,游戏也可以进行5-6轮的拦截才分出胜负。

可以很显然的感受到:DeepSeekV3编程方面的能力在增强。

本来想着受到DeepSeek的影响,其它大模型的能力肯定也在飞速变化,就把相同的提示词放到其它几款主流模型测了一下,输出的代码基本在200行左右。

既然DeepSeekV3可以写点简单的游戏了,那就来试试高级点的Web效果。

第1版提示词:以16:9的比例,用HTML写一个Web页面,视觉效果整体如下,背景是暗黑色,左端伸展出红色网格状线条,向页面中间延伸,右端伸展出蓝色网格状线条,向页面中间延伸,并且网格线条的颜色逐渐变浅。

页面效果图是平面静止的,不符合预期,那就调整提示词。

第2版:页面的视觉效果大致是对的,但是左右两端网格线条要做成向中间流动的状态,颜色从两边到中间逐渐变浅。

第3版:网格线条的颜色,从两边到中间,颜色从明亮到暗淡,直至消失,向中间流动时,网格逐渐收窄,最终形成3D视觉效果。

第4版:视觉效果完全正确,但是网格线条的流向不对,是从两边向中间流动,不是从下边向上边流动。

第5版:上面的效果完全正确,但是希望把网格大小收缩一些,增强点网格密度,并且稍微提高一些颜色的明亮度。

几轮修改之后,3D视觉的页面效果已经基本符合预期了。

这里不由的在反思一个问题,既然DeepSeekV3能写出这种页面,那么是不是我写的提示词不行,所以让DeepSeek自己来写提示词,会不会更靠谱?

除了视觉效果,再来试试业务编程,写一个简单的档案采集表单,使用提示词:使用Html写一个打工人档案采集页面。

DeepSeekV3的发挥很稳定,不但写了一个详细的表单采集,还兼顾字段校验和单选以及时间类型等,最主要的是知道打工人会采集哪些信息。

既然模型的编程能力基本可用了,那么AI相关的工具也就可以试试了。

最近和损友在测试AI编程工具,我写的是《搭建Trae+Vue3的AI开发环境》,那货写的是:

《Cursor:一个让程序员“失业”的AI代码搭子》,天知道这种标题,他是怎么想出来的,特别抽象。

他把自己的原型导入Cursor中,可以直接生成不错的小程序代码,而我在Trae中使用DeepSeekV3模型,同样可以快速的生成Vue工程。

从十年后端的角度来说,AI编程工具已经可以使用了,值得大家试一试。

实际上从去年开始,在自媒体上就有一大批所谓的超级个体,开始用AI工具快速的发布小程序,在Cursor的加持下导入PRD,优化之后发布应用。

会自然而然的在自媒体话题中发酵,不管是产品还是账号,火哪一个都不能叫瞎忙活。

原创作者: cicada-smile 转载于: https://www.cnblogs.com/cicada-smile/p/18826084

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值