本文使用 Zhihu On VSCode 创作并发布
量子态
在量子物理的视角下,量子态(quantum state)是用来描述一个系统的每种可能的结果的概率分布的数学量。与此同时,一个系统的行为可以通过量子态以及整个系统随时间的演化(evolution)方程(薛定谔方程)预测。
量子态,广义上可以分为纯态(纯量子态)和混合量子态两种。其中混合量子态的定义不是统一的,在稍后的篇幅中会指出不同点。需要注意的是,量子态使用数值描述时是定义于整个复数域的。
对于一个量子系统而言,其具有一个对应的希尔伯特空间(Hilbert Space),也就是一种广义的完备的内积空间(可以将其视作欧几里得空间在无穷维上的扩展)。所以这个量子系统的量子态可以用其对应的希尔伯特空间的向量表示。这便被称为状态向量(state vector,在部分资料中被翻译为态矢)。由于在量子力学中,如果某个状态向量是另一个状态向量的标量倍数,那么这两个状态向量被认为对应着同样的量子态。故状态向量的L2范数并没有物理意义,只有方向才具有物理意义。
因此,为了统一起见,所有的状态向量的L2范数都被设定为1,所以一个量子系统的所有的状态向量的集合是这个系统对应的希尔伯特空间的单位球。由于状态向量的元素是复数域的,因此如果两个状态向量仅仅只有全局相位因子(global phase factor)不同,那么这两个状态向量依旧代表同一个量子态。也就是当
纯态
纯态的定义
纯态(Pure State),在一些场景中可能被称为状态向量(state vector)或者波函数(wave function),当一个量子态能被描述为其他量子态的一种混合(mixture)的时候,这个量子态就是纯态(表示的)。如果一个量子系统具有精确的已知状态的时候,也称其处于纯态。
纯态的性质
如果将纯态写作为状态向量的形式时,纯态的态矢(系数向量)
其中,
因此可以发现,如果将纯态通过状态向量的视角表述,那么纯态是一个位于
补充:纯态的表示以及Bloch Sphere
在量子力学中,数学表示可以是多样的,在这里可以先行引入密度矩阵或密度算子的概念。给定纯态
思考:结合第一部分的量子态L2范数归一的规定,为什么纯态的密度矩阵这一数学表示可以和状态向量等价。

z轴的两端分别是一对本征态
由于纯态可以用状态向量表示且满足L2归一(特别的,这里的写法体现了量子叠加,下一部分将会详细描述)
所以可以表达为:
其中