java二进制与运算符_Java的位运算符与二进制转换

转换:

Java整型数据类型有:byte、char、short、int、long。要把它们转换成二进制的原码形式,必须明白他们各占几个字节。,一个字节==8位数

数据类型                           所占位数

byte                                       8boolean                                8

short                                    16

int                                         32long                                      64

float                                      32double                                  64char                                     16

byte

正数最大位0111 1111,也就是数字127

负数最大为1111 1111,也就是数字-128

反码与补码

1、反码:

一个数如果是正,则它的反码与原码相同;

一个数如果是负,则符号位为1,其余各位是对原码取反;

2、补码:利用溢出,我们可以将减法变成加法

对于十进制数,从9得到5可用减法:

9-4=5    因为4+6=10,我们可以将6作为4的补数

改写为加法:

9+6=15(去掉高位1,也就是减10)得到5.

对于十六进制数,从c到5可用减法:

c-7=5    因为7+9=16 将9作为7的补数

改写为加法:

c+9=15(去掉高位1,也就是减16)得到5.

在计算机中,如果我们用1个字节表示一个数,一个字节有8位,超过8位就进1,在内存中情况为(100000000),进位1被丢弃。

⑴一个数为正,则它的原码、反码、补码相同

⑵一个数为负,刚符号位为1,其余各位是对原码取反,然后整个数加1

详细请参考http://www.cnblogs.com/zhangziqiu/archive/2011/03/30/ComputerCode.html

Integer.toHexString的参数是int,如果不进行&0xff,那么当一个byte会转换成int时,由于int是32位,而byte只有8位这时会进行补位,

例如补码11111111的十进制数为-1转换为int时变为11111111111111111111111111111111好多1啊,即0xffffffff但是这个数是不对的,这种补位就会造成误差。

和0xff相与后,高24比特就会被清0了,结果就对了。

还需要明白一点的是:计算机表示数字正负不是用+ -加减号来表示,而是用最高位数字来表示,0表示正,1表示负

在计算机系统中,数值一律用补码来表示(存储)。

主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补

码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。

补码与原码的转换过程几乎是相同的。

数值的补码表示也分两种情况:

(1)正数的补码:与原码相同。

例如,+9的补码是00001001。

(2)负数的补码:符号位(最高位)为1,其余位为该数绝对值的原码按位取反;然后整个数加1。

例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码

0000111按位取反为1111000;再加1,所以-7的补码是11111001。

已知一个数的补码,求原码的操作分两种情况:

(1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码。

(2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取反,然后再整个数加1。

例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”;其余7位1111001取反后为0000110;再加1,所以是10000111。

源码:是什么就是什么。负数就是最前面符号位为1。

反码:正的就是补码,负的就是各位取反,0换1,1换0,注意,最高位符号为不变。

补码:正的就是源码,负的就是反码+1

比如: -1 -2

以8位二进制为例

源码:10000001 10000010

反码:11111110 11111101

补码:11111111 11111110

补码这样做的好处是什么呢?

请看-1+(-2)电脑怎么做:

用源码:10000001 + (10000010)=00000011 这是什么?是-3吗?不是,是3。所以不能直接用源码做加法。

用反码:11111110 + (11111101)=11111011 这是什么?是反码的"-4"

用补码:11111111 + (11111110)=11111101 末尾减一再取反得10000011,所以结果是补码的-3。

反码为什么出错?以4位数为例,高位为符号位(括号内为绝对值):

1010 (2)取反 1101 (5)

1011 (3)取反 1100 (4)

然后 -2 + (-3) 变成了 -(5 + 4)超出8的部分舍去,得 1001,再取反得 1110,成了-6

究其原因:各位取反的两数相加:1010+0101=1111必是全1即绝对值为7,2->5,3->4,相对于8共偏差了2,然后9=1mod8,1->6,只修正了1点偏差,

结果就出现了1的偏差。补码中末尾加一就是修正了该偏差,得到正确的结果。即2->6,3->5.相对于8无偏差11=3mod8,3->5。

位运算符:

位移进制运算

带符号右移 题:-15 >> 2 = -4

15原码:   00000000 00000000 00000000 00001111 //32位,二进制

反码:    11111111 11111111 11111111 11110000 //0变1,1变0

补码:    11111111 11111111 11111111 11110001 //最后位加1,-15二进制

右移2位:  11111111 11111111 11111111 11111100 //右边丢弃2位,前面30位保留,左边补1

取反:      00000000 00000000 00000000 00000011 //0变1,1变0

+1:                                       3+1

结果:                                     =-4 //负号保留,十进制

带符号左移 题: 10 << 2 = 40

10 补码:    00000000 00000000 00000000 00001010 //32位,二进制

左移2位:    00000000 00000000 00000000 00101000 //左边丢弃2位,右边补0

结果:

40 //十进制

无符号右移 题:-4321 >>> 30 = 3

4321原码:         00000000

00000000 00010000 11100011 //32位,二进制

反码:           11111111 11111111 11101111 00011100 //0变1,1变0

补码:           11111111 11111111 11101111 00011101 //最后位加1,-4321二进制

无符号右移30位:  00000000 00000000 00000000 00000011 //右边丢弃30位,前面二位保留,左边补0

结果:                                                3 //十进制

& 位逻辑与 题:44 & 21 = 4

44 补码:    00000000 00000000 00000000 00101100 //32位,二进制

21 补码:    00000000 00000000 00000000 00010101 //32位,二进制

& 运算:     00000000 00000000 00000000 00000100 //对应的两个二进制位均为1时 结果位才为1 否则为0

结果:                                         4 //十进制

| 位逻辑与 题:9 | 5 = 13

9 补码:    00000000 00000000 00000000 00001001 //32位,二进制

5 补码:    00000000 00000000 00000000 00000101 //32位,二进制

| 运算:    00000000 00000000 00000000 00001101 //对应的二个二进制位有一个为1时,结果位就为1

结果:                                       13 //十进制

^ 位逻辑异或 题: 9 ^ 5 = 12

9 补码:    00000000 00000000 00000000 00001001 //32位,二进制

5 补码:    00000000 00000000 00000000 00000101 //32位,二进制

| 运算:    00000000 00000000 00000000 00001100 //对应的二进制位相异时,结果为1

结果:                                       12 //十进制

~ 位逻辑反 题: ~9 = -10

9 补码:    00000000 00000000 00000000 00001001 //32位,二进制

~ 运算:    11111111 11111111 11111111 11110110 //最高位为1表示为一个负数,则进行取反加1

取反:      00000000 00000000 00000000 00001001 //32位,二进制

+1:                                      9+1 //32位,二进制

结果:                                      -10 //十进制

由于数据类型所占字节是有限的,而位移的大小却可以任意大小,所以可能存在位移后超过了该数据类型的表示范围,于是有了这样的规定: 如果为int数据类型,且位移位数大于32位,则首先把位移位数对32取模,不然位移超过总位数没意义的。所以4>>32与4>>0是等价的。

如果为long类型,且位移位数大于64位,则首先把位移位数对64取模,若没超过64位则不用对位数取模。

如果为byte、char、short,则会首先将他们扩充到32位,然后的规则就按照int类型来处理。

实际应用:

1.  判断int型变量a是奇数还是偶数

a&1  = 0 偶数

a&1 =  1 奇数

2.  求平均值,比如有两个int类型变量x、y,首先要求x+y的和,再除以2,但是有可能x+y的结果会超过int的最大表示范围,所以位运算就派上用场啦。

(x&y)+((x^y)>>1);

3.  对于一个大于0的整数,判断它是不是2的几次方

((x&(x-1))==0)&&(x!=0);

4.  比如有两个int类型变量x、y,要求两者数字交换,位运算的实现方法:性能绝对高效

x ^= y;y ^= x;x ^= y;

5. 求绝对值

int abs( int x ){int y ;y = x >> 31 ;return (x^y)-y ;        //or: (x+y)^y}

6.  取模运算,采用位运算实现:

a % (2^n) 等价于 a & (2^n - 1)

7.  乘法运算   采用位运算实现

a * (2^n) 等价于 a << n

8.   除法运算转化成位运算

a / (2^n) 等价于 a>> n

9.   求相反数

(~x+1)

10  a % 2 等价于 a & 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值