文章目录
15. 二进制中 1 的个数
题目链接
题目描述
思路
一. 利用Integer类的bitCount()
二. 常规循环
三. n&(n-1)
15. 二进制中 1 的个数
题目链接
NowCoder
题目描述
任意给定一个32位无符号整数n,求n的二进制表示中1的个数,比如n = 5(0101)时,返回2,n = 15(1111)时,返回4
这也是一道比较经典的题目了,相信不少人面试的时候可能遇到过这道题吧,下面介绍了几种方法来实现这道题,相信很多人可能见过下面的算法,但我相信很少有人见到本文中所有的算法。如果您上头上有更好的算法,或者本文没有提到的算法,请不要吝惜您的代码,分享的时候,也是学习和交流的时候。
思路
一. 利用Integer类的bitCount()
代码实现
package 二进制一的个数;/*
作者 :XiangLin
创建时间 :25/03/2020 23:28
文件 :BitCount1.java
IDE :IntelliJ IDEA
*/
public class BitCount1 {
public static int numberOfOne(int n){
return Integer.bitCount(n);
}
public static void main(String[] args) {
System.out.println("数字 10的二进制表示中的1的个数:"+numberOfOne(10));
}
}
二. 常规循环
时间复杂度O(logN)
因为是统计1的个数,那么用输入整数的每一位与1的位与运算就可以简单的实现
代码实现
public class BitCount2 {
public static int numberOfOne(int n){
int result = 0;// 记录数字中1的位数
for (int i = 0; i <= 32; i++){//int占32bit
result += (n&1);
n >>>= 1;
}
return result;
}
public static void main(String[] args) {
System.out.println("数字 9的二进制表示中的1的个数:"+numberOfOne(9));//2
}
}
是最简单的方法,有点程序基础的人都能想得到,那就是移位+计数,很简单,不多说了,直接上代码,这种方法的运算次数与输入n最高位1的位置有关,最多循环32次。
public class BitCount2{
public static int numberOfOne(int n){
int result = 0;
while (n > 0){
if ((n & 1) == 1){
++ result;
}
n >>>= 1;
}
return result;
}
public static void main(String[] args) {
System.out.println("数字 11的二进制表示中的1的个数:"+numberOfOne(11));//2
}
}
三. n&(n-1)
时间复杂度,其中 M 表示 1 的个数。
一个结论 结论:一个数与该数减一的结果进行与运算n&(n-1),会把该数右边(低位)第一个1变为0,而该位左边保持不变(高位)
例子:比如1100(对应十进制是12),减去1之后的结果是1011(也就是十进制的11),两个数进行与运算之后,我们发现最后的结果是1000(对应十进制的8,当然这个8与后面没有关系,可以略过)。这样我们每进行一次的与运算就消去一个1,这样消到最后肯定是0了,所以我们可以在代码中以这个为循环的终止条件。
package 二进制一的个数;
/*
作者 :XiangLin
创建时间 :26/03/2020 17:51
文件 :BitCount3.java
IDE :IntelliJ IDEA
*/
public class BitCount3 {
public static int numberOfOne(int n){
int result = 0;// 记录数字中1的位数
while (n != 0){// 数字的二进制表示中有多少个1就进行多少次操作
result ++;
n = n&(n-1);
}
return result;
}
public static void main(String[] args) {
System.out.println("数字 9的二进制表示中的1的个数:"+numberOfOne(9));
}
}
个人微信公众号,专注于学习资源、笔记分享,欢迎关注。我们一起成长,一起学习。一直纯真着,善良着,温情地热爱生活,,如果觉得有点用的话,请点击在看哦,谢谢我亲爱的读者朋友。